Skip to main content

InterDigital’s 6G Vision of “Zero-energy” (ZE) air-interface designs


In the 6G Summit, Tanbir Haque from InterDigital talked about the need for new Air-Interfaces for Ultra-Low Power Communications and the challenges, solutions and potential benefits associated with that.

The future vision is to have something like 1 Trillion IoT devices in 2030 but it will require us to re imagine the radio transceiver, the air interface and the overall system. Currently used DRX (Discontinuous Reception) & PSM (Power Saving Mode) based approaches in 3GPP LTE-M & NB-IoT suffer from an inherent tradeoff between device reachability & battery life. Longer DRX cycles result in extended battery life at the cost of latency and Devices are not reachable during periods of deep sleep in PSM. Furthermore, mobile devices must make periodic measurements for TAU procedures thereby limiting the maximum achievable battery life. This necessitates the need to introduce on demand features to the 3GPP system framework in order to break this latency vs battery life tradeoff.

On demand features will have to be introduced to the 3GPP/NR system framework using a new class of “zero energy” (ZE) air interfaces that concurrently deliver power and information to devices. Ultra low power receivers that consume few 10s of nanowatt power and are capable of macro like link budgets will need to be developed. Using these new PHY & MAC concepts a scalable system framework will have to be developed and integrated into future cellular networks!!

The slides are available here and the video is embedded below:




Further Reading on this topic:

Comments

Popular posts from this blog

IEEE 802.11bn Ultra High Reliability (UHR), a.k.a. Wi-Fi 8

Back in 2020 we looked at the introductory post of Wi-Fi 7 which was followed up by a more detailed post in Feb 2022. We are now following on with an introductory post on the next generation Wi-Fi.  A new paper on arXiv explores the journey towards IEEE 802.11bn Ultra High Reliability (UHR), the amendment that will form the basis of Wi-Fi 8. Quoting selected items from the paper  below: After providing an overview of the nearly completed Wi-Fi 7 standard, we present new use cases calling for further Wi-Fi evolution. We also outline current standardization, certification, and spectrum allocation activities, sharing updates from the newly formed UHR Study Group. We then introduce the disruptive new features envisioned for Wi-Fi 8 and discuss the associated research challenges. Among those, we focus on access point coordination and demonstrate that it could build upon 802.11be multi-link operation to make Ultra High Reliability a reality in Wi-Fi 8. The IEEE 802.11bn UHR: Whose ...

Laser Inter-Satellite Links (LISLs) in a Starlink Constellation

When we first talked about Starlink back in 2019 , we saw in the video that the concept involved laser communication to communicate between the satellites. While the initially launched satellites did not have the laser communication mechanism built in, it looks like they are being added to the newer ones.  A report from Fast Company in late 2021 said: One of the next big upgrades in telecom will involve satellites firing lasers at each other—to beam data, not blow stuff up. The upside of replacing traditional radio-frequency communication with lasers, that encode data as pulses of light, can be much like that of deploying fiber-optic cable for terrestrial broadband: much faster speeds and much lower latency. “Laser links in orbit can reduce long-distance latency by as much as 50%, due to higher speed of light in vacuum & shorter path than undersea fiber,” SpaceX founder Elon Musk tweeted in July about the upgrade now beginning for that firm’s Starlink satellite constellation. ...

Tutorial Session on Current Trends and Key Challenges of Satellite communications

The 2024 Global Forum on Connecting the World from the Skies , held on November 25-26, brought together policymakers, industry leaders, and technical experts to discuss the evolving landscape of Non-Terrestrial Networks (NTNs). Hosted by the International Telecommunication Union (ITU) and Saudi Arabia’s Communications, Space & Technology Commission (CST), the event highlighted NTNs' critical role in shaping the future of global connectivity. The conference featured a rich lineup of keynote speeches, panel discussions, tutorial sessions, and an award ceremony. One standout session on Day 1 was the tutorial "Satellite Communications: Current Trends and Key Challenges," delivered by Professor Riccardo De Gaudenzi of the University of Parma. This session explored the vital role satellite networks play in global communication, from video broadcasting to bridging connectivity gaps in underserved regions. Traditionally focused on broadcasting and professional applications, s...