Skip to main content

Connectivity from the Stratosphere by Airbus' Zephyr


The following post uses a report from ITU news in combination with a presentation from UNESCAP.

Zephyr is an ultra-light solar-powered high-altitude platform station (HAPS). Solar energy powers daytime flight as well as re-charging batteries for night-time operations. It has a 25 metre wingspan (one third the width of an Airbus A380) and can launch from a selection of sites strategically positioned across the globe.

Zephyr flies above the weather and regular air traffic, covering distances of over 1000 nautical miles a day — that’s 1852 kilometres! Of particular interest to telecoms operators is Zephyr’s ability to remain persistent over a designated location for long periods of time, delivering connectivity services across a wide area.

Zephyr weighs less than 75 kilograms, the same as two aircraft seats. It is this highly optimized aircraft mass, together with the available power of the Zephyr propulsion system and the high efficiency of the solar cell technology, which permits Zephyr to remain continuously within the stratosphere after launch, day after day, performing station keeping, mission specific manoeuvres and providing sufficient power for connectivity payloads during service delivery.


On 11 July 2018, a Zephyr S aircraft took off on its maiden flight in Arizona. It flew for 25 days, 23 hours and 57 minutes, marking the longest flight duration ever achieved without re-fuelling. The Zephyr aircraft has also flown in excess of 74 000 feet and repeatedly demonstrated an ability to remain in the stratosphere overnight. These achievements of un-interrupted and persistent flight have proven the readiness of Zephyr as a platform capable of delivering connectivity services from the stratosphere, and are the result of a 15-year journey.

The Zephyr S aircraft that set the endurance benchmark in Arizona was the first serial production Zephyr aircraft. In July 2018, Airbus opened a dedicated Zephyr production facility in Farnborough (United Kingdom), the world’s first HAPS assembly line. In addition, Airbus has established a permanent operations and evaluation facility in Wyndham, Western Australia. The site has been operational since September 2018 and has been selected due to the largely unrestricted surrounding airspace and reliable weather conditions.

(click image to enlarge)

Delivering connectivity

The Zephyr platform provides a unique combination of advantages for the delivery of connectivity services:
  • Persistence: Providing controlled coverage over a designated area. The tight stationkeeping capabilities of Zephyr have been well proven in flight trials.
  • Low-latency: Zephyr is close enough to ground stations to have little latency and offer real-time services.
  • Flexibility: The ability to re-position/re-task the platform after launch. Providing the ability to re-deploy connectivity assets to areas where demand is peaking.
  • Scalability: The ability to add/remove aircraft to adjust the combined footprint of a Zephyr constellation.
  • Rapid Evolution: Aircraft can be fitted with enhanced payload capabilities and returned to service rapidly with enhanced performance/coverage capabilities as technology advancements become available. The same is true of platform technologies which can extend the life and service intervals for aircraft.

Connectivity markets

Configured with the corresponding payload Pod, the Zephyr platform is able to provide a range of connectivity applications: public protection disaster relief (PPDR), emergency communications, theatre backhauling, cellular backhauling, 5G connectivity, direct to device communication and direct to home services. In the near-term, Zephyr will provide cellular backhaul services to rural and semi-urban under-served regions, and where temporary capacity is required.

Some interesting videos from Airbus Defence & Space about Zephyr




Related Posts:

Comments

Popular posts from this blog

High-level Architecture Introduction of Mobile Cellular Networks from 2G to 5G

Here is an old tutorial explaining high level mobile network architecture, starting from GSM and then looking at GPRS, UMTS, LTE & 5G. Slides and video below High-level architecture of Mobile Cellular Networks from 2G to 5G from 3G4G Related links : Free 2G, 3G, 4G & 5G Training Videos 5G (IMT-2020) Wireless 5G vs 4G: what is the difference?

5G Connectivity will Enable New Use Cases

While we have been discussing advanced 5G use cases for years, it is only now, with the Standalone 5G (5G SA) that it is going to become possible to have many of these in practice. Of course they will take time to mature and be popular with the end users. As a part of our Free 5G Training initiative , we made a short video that will provide you with ideas and motivation for why 5G could do a lot more than just faster speeds. The video is embedded below. In addition, Parallel Wireless, one of the companies I consult for, did a webinar on 5G Use Cases which is available here . A good webinar on BrightTALK on 5G Use Cases by @Parallel_tw - https://t.co/AdpLOIOW6u #Free5Gtraining #5G #5GNetworks #5GUseCases #5GSpectrum #eMBB #mMTC #URLLC #5GRoadmaps #OpenRAN #5GXR #FWA #Vodafone #TMobile #Healthcare pic.twitter.com/LV677HrJ2G — 5G Training (@5Gtraining) May 28, 2020 Let us know which one is your favorite and which ones do you think will make operators money.

Fixed Wireless Access (FWA) and the Path to 5G Wireless Wireline Convergence (WWC)

I have covered Fixed Wireless Access (FWA) on The 3G4G Blog here and looked at automated HetNet design which included FWA links here . I have also covered Wireline Wireless Convergence (WWC) as part of 5G and Fixed-Mobile Convergence (FMC) posts. The links to the posts are available at the end. Back in December, Juniper took part in a Light Reading webinar which is being shared as part of this post. With revenues flat and traffic continuing to explode, the unsustainable state of network economics needs another disruption. The 5G deployment cycle offers an insertion opportunity for new converged architectures. Wireless offload solutions can re-route the traffic of data-hogging mobile subscribers over wireline cores built for bandwidth and performance rather than mobile cores (EPC) primarily designed for mobility and portability. The 5G Network Architecture in 3GPP Release-16 allows the convergence of fixed and wireless networks. This also allows many new opportunities as can be se