Skip to main content

Connectivity from the Stratosphere by Airbus' Zephyr


The following post uses a report from ITU news in combination with a presentation from UNESCAP.

Zephyr is an ultra-light solar-powered high-altitude platform station (HAPS). Solar energy powers daytime flight as well as re-charging batteries for night-time operations. It has a 25 metre wingspan (one third the width of an Airbus A380) and can launch from a selection of sites strategically positioned across the globe.

Zephyr flies above the weather and regular air traffic, covering distances of over 1000 nautical miles a day — that’s 1852 kilometres! Of particular interest to telecoms operators is Zephyr’s ability to remain persistent over a designated location for long periods of time, delivering connectivity services across a wide area.

Zephyr weighs less than 75 kilograms, the same as two aircraft seats. It is this highly optimized aircraft mass, together with the available power of the Zephyr propulsion system and the high efficiency of the solar cell technology, which permits Zephyr to remain continuously within the stratosphere after launch, day after day, performing station keeping, mission specific manoeuvres and providing sufficient power for connectivity payloads during service delivery.


On 11 July 2018, a Zephyr S aircraft took off on its maiden flight in Arizona. It flew for 25 days, 23 hours and 57 minutes, marking the longest flight duration ever achieved without re-fuelling. The Zephyr aircraft has also flown in excess of 74 000 feet and repeatedly demonstrated an ability to remain in the stratosphere overnight. These achievements of un-interrupted and persistent flight have proven the readiness of Zephyr as a platform capable of delivering connectivity services from the stratosphere, and are the result of a 15-year journey.

The Zephyr S aircraft that set the endurance benchmark in Arizona was the first serial production Zephyr aircraft. In July 2018, Airbus opened a dedicated Zephyr production facility in Farnborough (United Kingdom), the world’s first HAPS assembly line. In addition, Airbus has established a permanent operations and evaluation facility in Wyndham, Western Australia. The site has been operational since September 2018 and has been selected due to the largely unrestricted surrounding airspace and reliable weather conditions.

(click image to enlarge)

Delivering connectivity

The Zephyr platform provides a unique combination of advantages for the delivery of connectivity services:
  • Persistence: Providing controlled coverage over a designated area. The tight stationkeeping capabilities of Zephyr have been well proven in flight trials.
  • Low-latency: Zephyr is close enough to ground stations to have little latency and offer real-time services.
  • Flexibility: The ability to re-position/re-task the platform after launch. Providing the ability to re-deploy connectivity assets to areas where demand is peaking.
  • Scalability: The ability to add/remove aircraft to adjust the combined footprint of a Zephyr constellation.
  • Rapid Evolution: Aircraft can be fitted with enhanced payload capabilities and returned to service rapidly with enhanced performance/coverage capabilities as technology advancements become available. The same is true of platform technologies which can extend the life and service intervals for aircraft.

Connectivity markets

Configured with the corresponding payload Pod, the Zephyr platform is able to provide a range of connectivity applications: public protection disaster relief (PPDR), emergency communications, theatre backhauling, cellular backhauling, 5G connectivity, direct to device communication and direct to home services. In the near-term, Zephyr will provide cellular backhaul services to rural and semi-urban under-served regions, and where temporary capacity is required.

Some interesting videos from Airbus Defence & Space about Zephyr




Related Posts:

Comments

Popular posts from this blog

CSI-RS vs SRS Beamforming

In an issue of Signals Flash by Signals Research Group (SRG), they talked about 2 different types of MIMO. Quoting from their journal, "CSI-RS versus SRS. Those operators that have tested or made token use of MU-MIMO leverage a flavor of MU-MIMO that is based on CSI-RS. The MU-MIMO network we tested was based on SRS, which makes it far more likely to observe sixteen spatial layers (versus eight)." I reached out to Emil Bj√∂rnson, Visiting Professor at KTH Royal Institute of Technology and Associate Professor at Link√∂ping University to see if he has explained this in any of his videos. Here is what he said: " I'm not talking about 3GPP terminology in any of my videos. But you can listen to the slides that starts around 12:40 in this video (embedded below) . If you are looking for CSI-RS vs SRS based MU-MIMO, then jump to around 12:40 in this video where you can see CSI-RS being referred to as "grid of beams" and SRS is similar to the other option, which is t

High-level Architecture Introduction of Mobile Cellular Networks from 2G to 5G

Here is an old tutorial explaining high level mobile network architecture, starting from GSM and then looking at GPRS, UMTS, LTE & 5G. Slides and video below High-level architecture of Mobile Cellular Networks from 2G to 5G from 3G4G Related links : Free 2G, 3G, 4G & 5G Training Videos 5G (IMT-2020) Wireless 5G vs 4G: what is the difference?

Laser Inter-Satellite Links (LISLs) in a Starlink Constellation

When we first talked about Starlink back in 2019 , we saw in the video that the concept involved laser communication to communicate between the satellites. While the initially launched satellites did not have the laser communication mechanism built in, it looks like they are being added to the newer ones.  A report from Fast Company in late 2021 said: One of the next big upgrades in telecom will involve satellites firing lasers at each other—to beam data, not blow stuff up. The upside of replacing traditional radio-frequency communication with lasers, that encode data as pulses of light, can be much like that of deploying fiber-optic cable for terrestrial broadband: much faster speeds and much lower latency. “Laser links in orbit can reduce long-distance latency by as much as 50%, due to higher speed of light in vacuum & shorter path than undersea fiber,” SpaceX founder Elon Musk tweeted in July about the upgrade now beginning for that firm’s Starlink satellite constellation. The