Skip to main content

Will SpaceX's Starlink LEO Satellites Succeed in Connecting the Unconnected?


While there are many initiatives going on to bring connectivity to rural, remote and other areas with little or no connectivity, none of them are as bold and advances as SpaceX's Starlink satellites.

According to SpaceNews last month:

SpaceX has asked the International Telecommunication Union to arrange spectrum for 30,000 additional Starlink satellites. 

SpaceX, which is already planning the world’s largest low-Earth-orbit broadband constellation by far, filed paperwork in recent weeks for up to 30,000 additional Starlink satellites on top of the 12,000 already approved by the U.S. Federal Communications Commission.

The FCC, on SpaceX’s behalf, submitted 20 filings to the ITU for 1,500 satellites apiece in various low Earth orbits, an ITU official confirmed Oct. 15 to SpaceNews. 

SpaceX deployed its first 60 Starlink satellites in May and plans to launch hundreds — potentially over a thousand — more in the year ahead. 

The ITU, a United Nations entity, coordinates spectrum at the international level for satellite operators to prevent signal interference and spectrum hogging. National regulators submit filing on behalf of their country’s satellite operators.

SpaceX’s ITU filings contain details about frequency usage, proposed orbital altitudes, and the number of satellites it desires. The filings do not say when SpaceX hopes to launch the satellites, or other details such as spacecraft throughput and deorbit timelines. 

ITU filings are an early step in deploying a satellite system, and are often made years before a company plans to build launch spacecraft. SpaceX will be required to disclose more details about its constellation when applying with the FCC for access to the U.S. market to offer broadband services, like it did with the 12,000-satellite constellation it began launching in May. 

In its filings, SpaceX said the additional 30,000 satellites would operate in low Earth orbit at altitudes ranging from 328 kilometers to 580 kilometers. 

SpaceX said the satellites will have steerable spot beams to link with customers, and “omnidirectional” beams for spacecraft telemetry, tracking and control functions. 

Filings trigger a seven-year deadline whereby the satellite operator, in this case SpaceX, must launch at least one satellite with its requested frequencies and operate it for 90 days. Once spectrum rights have been assigned through this “bring into use” procedure, other ventures must design their systems to avoid interference with the newly minted incumbent operator. 

The ITU is expected to change its “bring into use” rules during the upcoming World Radiocommunication Conference, which takes place from Oct. 28 to Nov. 22 in Sharm el-Sheikh, Egypt. Regulators intend to set more stringent rules for megaconstellation ventures, requiring them to launch percentages of their total constellation by to-be-determined deadlines in order to keep their priority spectrum rights. 

This video explains details about Starlink Satellites



Related Posts:

Comments

Popular posts from this blog

5G Drone Cell Towers

I was involved with looking at how Aerostats & Drones can help bring connectivity, especially in hard to reach areas or in case of disaster recovery and other emergencies. I wrote about it in detail here.

Last month, 3GPP did a summary of all things 3GPP is doing in this area.

To address the needs of a new and quickly maturing sector, there has been a lot of activity in the 3GPP Working Groups to ensure that the 5G system will meet the connectivity needs of Unmanned Aerial Systems (UAS) – consisting of Unmanned Aerial Vehicles (aka. drones) and UAV controllers under the watchful eye of UAS traffic management.

Release 15 - Enhanced LTE Support for Aerial Vehicles (TR 36.777)

A study to Investigate the ability for aerial vehicles to be served using LTE networks is now published, identifying further performance enhancements for UE-based solutions, Network-based solutions, downlink interference mitigation, uplink interference mitigation, mobility performance and aerial UE Identification…

High-level Architecture Introduction of Mobile Cellular Networks from 2G to 5G

Here is an old tutorial explaining high level mobile network architecture, starting from GSM and then looking at GPRS, UMTS, LTE & 5G. Slides and video below


High-level architecture of Mobile Cellular Networks from 2G to 5G from 3G4G
Related links:
Free 2G, 3G, 4G & 5G Training Videos5G (IMT-2020) Wireless5G vs 4G: what is the difference?

How does Plane Wi-Fi and Mobile Connectivity on Planes Work?

Ever wondered how Wi-Fi and mobile connectivity works on aeroplanes? This video explainer is all you need to understand this.