Skip to main content

WBA conducts Industry 4.0 Trials using Wi-Fi 6


Wi-Fi 6, a.k.a. 802.11ax promises a break from issues that have traditionally plagued Wi-Fi access and QoE. The move from OFDM to OFDMA makes it similar to 4G/5G access technology. Along with beamforming / beam steering and MU-MIMO one can confidently say this is similar to 5G-Light (not to be confused with NR-Light). A short video at the bottom explains Wi-Fi 6 in more details.

The Wireless Broadband Alliance (WBA), recently announced the successful completion of its phase one trial of Wi-Fi 6 infrastructure and services at the Mettis Aerospace factory in the UK.  The trial was the first of its kind in the world and an important part of the WBA’s Wi-Fi 6 test and development program. According to their press release:

Tests included applications of 4K video streaming, large scale file transfers, messaging and voice/video communications as well as the first stage of IoT sensor and mixed reality testing. Previous implementation tests with Wi-Fi failed to work in Mettis’ challenging factory environment. During the trial, speeds of 700 Mbps using 80 MHz channels were achieved and low latency applications, like video calling and video streaming, performed well with results below 6ms. These results proved that Wi-Fi 6 infrastructure can operate well in the presence of interference and noise in a complex and challenging factory environment as well as deliver high quality services for monitoring and maximizing machinery performance, minimizing downtime, and improving communications on the factory floor.

“The completion of this initial phase marks a significant milestone for the adoption of Wi-Fi 6,” said WBA CEO, Tiago Rodrigues. “The Mettis facility is an especially challenging environment for wireless communications with furnaces, presses and heat, a lot of moving heavy machinery and the presence of dust and in-air particulates. Nevertheless, the field tests in this highly charged atmosphere have proven that Wi-Fi 6 technology works well and can play a vital role within the industrial enterprise and IoT ecosystem. If Wi-Fi 6 can deliver highly reliable, high quality and high bandwidth communications in this type of factory environment, then it can deliver it almost anywhere,” he added.
A look at Concurrent Engineering’s PTC Vuforia augmented (mixed) reality software, used by the maintenance team to enable ‘walk- by’ machine monitoring.
“The Wi-Fi 6 infrastructure installed as part of the trials has exceeded our expectations in terms of performance, reliable connectivity and consistent coverage across the target area,” said Dave Green, Head of IT, Mettis Aerospace. “We are seeing immediate benefits in terms of the data we’re now able to collect and use. Moving forward, we will be able to vastly increase the data we collect from devices across our business, enhancing our manufacturing processes, reducing variability and increasing productivity.”

The trial took place at the 27-acre Mettis Aerospace facility in the West Midlands in collaboration with WBA member companies including Broadcom, Cisco, iBwave and Intel as well as Concurrent Engineering and Keysight. Mettis Aerospace supplies companies such as Airbus, Boeing and Rolls-Royce.

The Wi-Fi 6 technology had to prove it was able to provide total connectivity across the factory floor and enable improved synchronization of factory floor machinery and equipment with centralized monitoring and control systems.  This required the Wi-Fi network to deliver real-time high bandwidth communications, with very low latency and clear prioritization of data across a large-scale, complex factory environment.

Using devices such as smartphones, tablets, laptops and webcams equipped with the Broadcom (R) BCM4375 and Intel AX200 Wi-Fi 6 chipsets, the following tests were among those included in the Phase 1 trial:
  • 4k streaming from a webcam mounted on machinery within the factory
  • 4k YouTube streaming from a laptop with Intel AX200 chip
  • Uploads of very large video files over Wi-Fi
  • Roaming, Latency and persistent connectivity during Wi-Fi video calling using smartphones equipped with Broadcom’s BCM4375 chip
  • Augmented reality testing of machinery using devices with Wi-Fi 6 chipset
The Mettis factory also lies within the region selected by the UK Government as a 5G test bed for manufacturing. The WBA test results clearly demonstrate the important role Wi-Fi 6 can play within the broader 5G ecosystem.

Phase Two of the trial will focus on further tests of the Mixed reality applications and IoT sensing of key assets.

More details are also available on Mettis Aerospace website here. Some additional details are also available on Land Mobile website here.

Here is a short tutorial video on Wi-Fi 6 if technology interests you.


Further reading:

Comments

Popular posts from this blog

Highlights from XGMF's Conference to Advance Millimetre Wave Technology

On April 1, 2024, two of Japan's leading connectivity organizations—the 5G Mobile Promotion Forum (5GMF) and the Beyond 5G Promotion Consortium (B5GPC)—joined forces to create the XG Mobile Promotion Forum ( XGMF ). This merger symbolizes a pivotal step in accelerating the adoption of next-generation wireless technologies. In May 2024, XGMF's Millimeter Wave Promotion Ad Hoc (Millimeter Wave AH) hosted the International Workshop on Millimeter Wave Dissemination for 5G. This event aimed to foster the adoption of millimeter wave (mmWave) technology in Japan and beyond, drawing an audience of approximately 200 attendees and broadcasting in both English and Japanese. The workshop featured opening remarks by Mr. Naohiko Ogiwara, Director of the Radio Department, Telecommunications Infrastructure Bureau, Ministry of Internal Affairs and Communications (MIC). Key speakers included: Mr. Takanori Mashiko (MIC, slides ) Mr. Sam Gielges (Qualcomm, online - no slides) Mr. Christopher Pric...

Testing, Refining, and Improving Stratospheric Connectivity: NTT Docomo’s HAPS Trials

At MWC 2025, NTT Docomo highlighted its latest initiatives under the NTT Group's "NTT C89" space-business strategy, such as mobile-connectivity services using unmanned vehicles, or high-altitude platform stations (HAPS), that fly in the stratosphere for days or months, using relays to provide mobile connectivity in mountainous and remote areas, including at sea and in the sky. A presentation on NTT C89 Aerospace Business Strategy is available here while a presentation on NTT DOCOMO's Non-Terrestrial Network (NTN) for Extreme Coverage Extension is available here . Stratospheric connectivity, enabled by High Altitude Platform Stations (HAPS), is emerging as a key solution for extending mobile coverage to remote and underserved areas. However, ensuring that these airborne platforms can provide stable, high-quality connectivity requires extensive testing and refinement. At MWC 2025, NTT Docomo showcased its progress in this domain, highlighting multiple real-world trials...

How Do Apple AirTags Work?

Apple AirTags have steadily gained popularity in the smart tag market. A recent report highlighted that 69% of smart tag buyers in late 2024 chose an Apple AirTag. This marks a significant rise from 45% in early 2022. In contrast, Tile, the category pioneer now owned by Life360, has seen its market share fall to 11% from 17% during the same period. Samsung's Galaxy SmartTags now hold second place. Interestingly, the technology behind AirTags resembles concepts like Opportunity Driven Multiple Access (ODMA) or Multihop Cellular Networks (MCNs), which I have previously explored . A similar approach has also been discussed regarding Bluetooth-based Ad-Hoc networks . How Do They Work? AirTags primarily use Bluetooth Low Energy (BLE) to communicate with nearby Apple devices that are part of the Find My network. This vast network consists of millions of Apple devices, including iPhones, iPads, and Macs, which can detect AirTags and securely relay their location back to the owner. Addit...