Skip to main content

Loon and Terrestrial LTE can Co-exist

In our last post we looked at how Telstra and Ericsson have increased the distance of LTE cell from 100 km to 200 km. If you compare that to Google Loon or other HAPS that fly at 20 km above earth (details here), it should be an easy task. This is what Signals Research Group investigated as part of their report which is available here officially or on LinkedIn here, unofficially (or officially as well).
Fierce Wireless has a good summary of this report here and extract reproduced below:

Based on a study of Loon’s network in Peru, Signals Research Group (SRG) found that Loon has a “modest” detrimental impact on the existing terrestrial LTE network while improving coverage in areas where terrestrial LTE coverage doesn’t exist. It’s pretty much the same impact one would get from any cell site being introduced in the same area.

Any time a new cell site gets deployed in an LTE network, it will generate at least some interference with adjacent cells, and Loon, whose balloons fly more than 60,000 feet above the earth, is no different, the research firm said.

SRG conducted the study—which was sponsored by Loon—the last week of September in a region just south of Tarapoto, Peru. The analysis involved both drive and walk tests and a mix of smartphones, with scanner equipment provided by Rohde & Schwarz and test solutions from Accuver America.

“The upshot is it does exactly what it was targeted to do,” providing a basic means to connect to mobile data in areas of the world that don’t have terrestrial coverage, and when it does that, its impact is very modest on the terrestrial infrastructure that exists there, said Mike Thelander, president of SRG, who posted a short video on LinkedIn.

“I think there may be some concern perhaps from some operators that ‘you’re going to put these balloons overhead, and all they’re going to do is mess up my network,’ and that doesn’t happen,” he told FierceWirelessTech.

On the user end of the service, consumers can do anything with a Loon-serviced device that LTE can do; there’s no VoLTE for voice calls, but over-the-top apps like Skype work just fine, he said. It’s not the kind of user experience you’d get in a place like downtown Seoul by any means, but “it is quite good,” he said.

According to SRG, the performance of the Loon network is somewhat comparable to a terrestrial LTE network. The Loon network that it tested used a 2x10 MHz channel in Band 28, so comparisons with a terrestrial LTE network need to be made accordingly.

“Although we observed sustained data speeds in the high teens (Mbps) and a peak physical layer throughput that was just over 40 Mbps… we believe more typical data speeds with Loon are in the mid- to high- single digits,” the executive summary states. “Latency was also only modestly higher (13%) than the terrestrial LTE network.”

Loon’s balloons act like floating cell towers, transmitting a provider’s service directly to a subscriber’s LTE device below. Loon’s balloons actually receive a signal from the ground, which is then shared across multiple balloons that spread it to users below using standard LTE signals.

The SRG study was intended to look at the interaction between Loon and terrestrial networks, according to Loon spokesman Scott Coriell. Loon needs to partner with a local carrier in any given location in order for it to work.

“Our aim is to help these local carriers expand their networks to places where it was previously difficult or impractical, and to help them attract new customers or better serve existing ones,” Coriell said, adding that Loon is pleased with the study’s findings.

Currently, Loon has two deployments planned with partners in Kenya and Peru, and it’s in conversations with other mobile operators around the world, he said. Loon has a lot of experience flying above the U.S., and there are use cases where Loon could help expand service in the U.S. It has provided services in Puerto Rico, but it hasn’t announced anything commercial-wise in the contiguous U.S.

Loon came into limelight when it was used to provide emergency coverage to Puerto Ricans picking up the pieces after Hurricane Maria back in 2019.

While this was hailed as a success by many, the results indicated that it was not a smooth sailing.


While these experiments prove that technically it is possible for Loon and terrestrial LTE to co-exist, there are still operational challenges that would need to be solved for Loon and other HAPS solution to provide a coverage in time of need.

Related Posts:

Comments

Popular posts from this blog

5G Drone Cell Towers

I was involved with looking at how Aerostats & Drones can help bring connectivity, especially in hard to reach areas or in case of disaster recovery and other emergencies. I wrote about it in detail here.

Last month, 3GPP did a summary of all things 3GPP is doing in this area.

To address the needs of a new and quickly maturing sector, there has been a lot of activity in the 3GPP Working Groups to ensure that the 5G system will meet the connectivity needs of Unmanned Aerial Systems (UAS) – consisting of Unmanned Aerial Vehicles (aka. drones) and UAV controllers under the watchful eye of UAS traffic management.

Release 15 - Enhanced LTE Support for Aerial Vehicles (TR 36.777)

A study to Investigate the ability for aerial vehicles to be served using LTE networks is now published, identifying further performance enhancements for UE-based solutions, Network-based solutions, downlink interference mitigation, uplink interference mitigation, mobility performance and aerial UE Identification…

High-level Architecture Introduction of Mobile Cellular Networks from 2G to 5G

Here is an old tutorial explaining high level mobile network architecture, starting from GSM and then looking at GPRS, UMTS, LTE & 5G. Slides and video below


High-level architecture of Mobile Cellular Networks from 2G to 5G from 3G4G
Related links:
Free 2G, 3G, 4G & 5G Training Videos5G (IMT-2020) Wireless5G vs 4G: what is the difference?

Futuristic Glass Antenna by NTT Docomo and AGC

For nearly a year, NTT Docomo has been working with the glass manufacturer AGC to create a new transparent antenna that can work with a base station to become an antenna. We know that as we move towards higher frequency, the penetration of radio waves in building is affected. While this is not obvious in C band, it is very visible in case of mmWaves.

In a recent publication titled "An Unobtrusive Antenna", Osamu Sawaji interviewed NTT Docomo and AGC engineers about this development

To solve these problems, NTT DOCOMO entered into joint development with major glass manufacturer AGC, presenting a new glass antenna in November 2018. The antenna is 85 cm wide, 21.2 cm high and 6.6 mm thick, and on first glance appears to be normal transparent glass. However, the antenna becomes a base station when connected to cables and a wireless transceiver in the ceiling and attached to indoor window glass.

The antenna makes use of the laminated glass manufacturing technique used for the fron…