Skip to main content

Is Li-Fi Gaining Momentum as an Alternative Beyond 5G?

I remember first talking about LiFi back in 2011, but since then things have come a long way. We discussed it being adopted by IEEE in a post couple of years back. IEEE 802.11 Light Communication (LC) TG which is working on 802.11 bb, is also called the Task Group "bb" (TGbb) and is focused on introducing necessary changes to the base IEEE 802.11 Stds to enable communications in the light medium.



In another post last year, we discussed that even though a lot of terms like LiFi, VLC, etc., are used interchangeably, they all have subtle differences.

Vodafone Deutschland and Signify (formerly Philips Lighting) announced that they are joining forces to interlink the two communication technologies 5G and LiFi, providing their customers with more speed and better mobile broadband connectivity:

The collaboration aims to develop applications, use cases and solutions that deliver secure and reliable two-way wireless communication at speeds well beyond traditional wireless technologies such as Wi-Fi and Bluetooth. Vodafone Deutschland is showcasing the benefits of combining the two technologies during the IEEE 5G Summit in Dresden.

Together, the two companies will explore and develop ways in which LiFi technology in local networks will be used in conjunction with 5G, so that Vodafone and other customers can benefit even more than before from the speed of those new technologies.

Under the name of Trulifi, Signify recently introduced a LiFi system that uses light waves instead of radio signals (such as WiFi, 4G/5G, Bluetooth, etc) to provide wireless data transmission and reception technology, which can be built into Philips-branded luminaires. It utilizes the lighting infrastructure to provide reliable and secure high-speed broadband connectivity up to 250 Mbps.

The combination of 5G and LiFi also offers advantages for industrial customers and the Internet of Things. It enables reliable and secure high-speed wireless communication with low latency in areas where certain radio frequencies are performing poorly due to critical environments or when wireless communications are not allowed at all due to safety regulations. In addition, fault-tolerant systems and services are better equipped to withstand network outages - the two communication technologies can be ubiquitous through inter-system handovers. 

Also conceivable are applications in autonomous driving where vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2X) networks enable direct communication between vehicles and the environment in order to increase safety and comfort in road traffic. The basis for connecting devices, machines and vehicles is a fixed point-to-point network that acts as a "wireless cable" and complements the Trulifi range.

I haven't heard much more since the announcement but here is a video from Signify



This week, ITU-T SG 15 is discussing "G.vlc: Consideration of new use cases and requirement on LiFi technology". We will have to wait for the details but one of the interesting things that the report highlights is that there are multiple standards working on light communications standards as shown in the table below.
All we can say right now is that this technology holds a lot of potential and has a fantastic future ahead.

Related Posts:

Comments

Popular posts from this blog

High-level Architecture Introduction of Mobile Cellular Networks from 2G to 5G

Here is an old tutorial explaining high level mobile network architecture, starting from GSM and then looking at GPRS, UMTS, LTE & 5G. Slides and video below High-level architecture of Mobile Cellular Networks from 2G to 5G from 3G4G Related links : Free 2G, 3G, 4G & 5G Training Videos 5G (IMT-2020) Wireless 5G vs 4G: what is the difference?

5G Connectivity will Enable New Use Cases

While we have been discussing advanced 5G use cases for years, it is only now, with the Standalone 5G (5G SA) that it is going to become possible to have many of these in practice. Of course they will take time to mature and be popular with the end users. As a part of our Free 5G Training initiative , we made a short video that will provide you with ideas and motivation for why 5G could do a lot more than just faster speeds. The video is embedded below. In addition, Parallel Wireless, one of the companies I consult for, did a webinar on 5G Use Cases which is available here . A good webinar on BrightTALK on 5G Use Cases by @Parallel_tw - https://t.co/AdpLOIOW6u #Free5Gtraining #5G #5GNetworks #5GUseCases #5GSpectrum #eMBB #mMTC #URLLC #5GRoadmaps #OpenRAN #5GXR #FWA #Vodafone #TMobile #Healthcare pic.twitter.com/LV677HrJ2G — 5G Training (@5Gtraining) May 28, 2020 Let us know which one is your favorite and which ones do you think will make operators money.

Fixed Wireless Access (FWA) and the Path to 5G Wireless Wireline Convergence (WWC)

I have covered Fixed Wireless Access (FWA) on The 3G4G Blog here and looked at automated HetNet design which included FWA links here . I have also covered Wireline Wireless Convergence (WWC) as part of 5G and Fixed-Mobile Convergence (FMC) posts. The links to the posts are available at the end. Back in December, Juniper took part in a Light Reading webinar which is being shared as part of this post. With revenues flat and traffic continuing to explode, the unsustainable state of network economics needs another disruption. The 5G deployment cycle offers an insertion opportunity for new converged architectures. Wireless offload solutions can re-route the traffic of data-hogging mobile subscribers over wireline cores built for bandwidth and performance rather than mobile cores (EPC) primarily designed for mobility and portability. The 5G Network Architecture in 3GPP Release-16 allows the convergence of fixed and wireless networks. This also allows many new opportunities as can be se