Skip to main content

Docomo and AGC use Metasurface Lens to Guide Millimeter Waves (mmWaves) Indoors

We wrote about Futuristic Glass Antenna by NTT Docomo and AGC back in 2019. It's good to see the partnership continue with this new announcement about use of metasurface lens to enhance radio signal reception indoors. 

Metamaterials is one of the focus areas of 6G as highlighted here. Samsung's 6G Vision whitepaper explains it as follows:

A metamaterial is usually constructed by arranging multiple tunable elements (PIN diodes, varactor diodes, etc.) in repeating patterns, at scales that are smaller than the wavelengths. Its precise shape, geometry, size, orientation, and arrangement enable smart properties capable of manipulating electromagnetic waves, e.g., blocking, absorbing, enhancing, or bending waves, to achieve benefits that go beyond what is possible with conventional materials. In addition, each element constituting a metamaterial can be controlled independently to achieve desirable characteristics of the electromagnetic waves such as the direction of propagation and reflection.

Metasurface lens as a phase shifting structure is applied to the signal radiated from an antenna array. It can adjust a beam direction by applying DC bias to its constituting elements. The metasurface lens has potential to help sharpen a beam shape.

NTT Docomo and AGC announced that they have developed a prototype technology that efficiently guides 28-GHz 5G radio signals received from outdoors to specific locations indoors using a film-like metasurface lens that attaches to window surfaces. DOCOMO and AGC also conducted what is believed to be world's first successful trial to direct 28-GHz signals passing through a window to specific locations indoors as well as raise the strength of the signals. The press release says: 

Newly emerging 5G networks as well as 6G networks of the future are expected to use high-frequency radio waves, such as 28 GHz. Although high-frequency signals enable the realization of advanced communication standards, they are subject to high attenuation over long distances and their high directivity resulting in low diffraction (or weak bending around objects) generally limits their range to within the line of sight of the transmitting base station. Consequently, it is difficult for high-frequency radio waves to penetrate windows, and even if they do they are attenuated to the point of not being able to propagate sufficiently to establish wireless communication links indoors.

The new metasurface lens is made with an artificially engineered material featuring a large number of sub-wavelength unit cells arranged periodically on a two-dimensional surface. Elements arranged in various shapes on the metasurface substrate can be attached to a glass window to direct radio signals to specific points ("focal points") indoors. It is believed that radio waves from an outdoor base station could be received on a window's broad surface and then efficiently propagated to specific focal points inside a building with the help of repeaters and reflectors.

The metasurface lens material is a transparent film that can cover virtually the entire inside surface of a window. The material has no effect on LTE and sub-6 band radio waves, so it can be used to improve indoor reception of 28 GHz radio signals without affecting the performance of legacy wireless frequencies.

The trial confirmed that the metasurface lens improves the power level of 28 GHz radio signals received at indoor focal points. The trial also confirmed the ability to control focal-point position as well as the ability to switch from single to dual focal points.

In addition, DOCOMO and AGC verified that structural design technology can be deployed to enable metasurface lenses to allow high-frequency radio signals to penetrate glass that has been coated for heat insulation.

DOCOMO and AGC have been developing transparent metasurface technology for use in solutions that not only improve access to high-frequency radio signals but also are aesthetically acceptable. The new metasurface lens incorporates DOCOMO's metasurface design technology and AGC's design and microfabrication technologies.

I am hoping to see a lot more of these, tunable to different frequencies in the future as we move on to even higher frequencies and Tera hertz frequencies. I am hoping a video with demo will be available soon.

Related Posts:

Comments

Popular posts from this blog

Laser Inter-Satellite Links (LISLs) in a Starlink Constellation

When we first talked about Starlink back in 2019 , we saw in the video that the concept involved laser communication to communicate between the satellites. While the initially launched satellites did not have the laser communication mechanism built in, it looks like they are being added to the newer ones.  A report from Fast Company in late 2021 said: One of the next big upgrades in telecom will involve satellites firing lasers at each other—to beam data, not blow stuff up. The upside of replacing traditional radio-frequency communication with lasers, that encode data as pulses of light, can be much like that of deploying fiber-optic cable for terrestrial broadband: much faster speeds and much lower latency. “Laser links in orbit can reduce long-distance latency by as much as 50%, due to higher speed of light in vacuum & shorter path than undersea fiber,” SpaceX founder Elon Musk tweeted in July about the upgrade now beginning for that firm’s Starlink satellite constellation. The

IEEE 802.11bn Ultra High Reliability (UHR), a.k.a. Wi-Fi 8

Back in 2020 we looked at the introductory post of Wi-Fi 7 which was followed up by a more detailed post in Feb 2022. We are now following on with an introductory post on the next generation Wi-Fi.  A new paper on arXiv explores the journey towards IEEE 802.11bn Ultra High Reliability (UHR), the amendment that will form the basis of Wi-Fi 8. Quoting selected items from the paper  below: After providing an overview of the nearly completed Wi-Fi 7 standard, we present new use cases calling for further Wi-Fi evolution. We also outline current standardization, certification, and spectrum allocation activities, sharing updates from the newly formed UHR Study Group. We then introduce the disruptive new features envisioned for Wi-Fi 8 and discuss the associated research challenges. Among those, we focus on access point coordination and demonstrate that it could build upon 802.11be multi-link operation to make Ultra High Reliability a reality in Wi-Fi 8. The IEEE 802.11bn UHR: Whose Study Gro

CSI-RS vs SRS Beamforming

In an issue of Signals Flash by Signals Research Group (SRG), they talked about 2 different types of MIMO. Quoting from their journal, "CSI-RS versus SRS. Those operators that have tested or made token use of MU-MIMO leverage a flavor of MU-MIMO that is based on CSI-RS. The MU-MIMO network we tested was based on SRS, which makes it far more likely to observe sixteen spatial layers (versus eight)." I reached out to Emil Björnson, Visiting Professor at KTH Royal Institute of Technology and Associate Professor at Linköping University to see if he has explained this in any of his videos. Here is what he said: " I'm not talking about 3GPP terminology in any of my videos. But you can listen to the slides that starts around 12:40 in this video (embedded below) . If you are looking for CSI-RS vs SRS based MU-MIMO, then jump to around 12:40 in this video where you can see CSI-RS being referred to as "grid of beams" and SRS is similar to the other option, which is t