Skip to main content

'5G Ready' OneWeb Megaconstellation is Getting Ready for Commercial Launch

Last week, OneWeb announced that they have successfully launched another 36 Low Earth Orbit (LEO) satellites thereby bringing its total in-orbit constellation to 146 satellites. These will form part of OneWeb’s 648 LEO satellite fleet that will deliver high-speed, low-latency global connectivity.


In a written evidence submitted to the UK parliament back in May 2020, it said:

OneWeb is deploying the first satellite communication network with 5G features capable to deliver fibre-like connectivity to people around the world, especially in rural and hard to reach areas, powered by a constellation of Low Earth Orbit satellites.

5G ready, at low latency and providing global coverage, OneWeb will be the first telecommunication operator to bring high speed internet everywhere. Its communications network will offer game-changing Mobility solutions to industries that rely on global connectivity, such as Aviation, Maritime, Automotive and create solutions for Broadband, Government and Cellular Backhaul.

Deploying a 5G Ready Global Core network establishing an architecture which will enable a plug and play model for integration of the satellite system with terrestrial (5G) networks, OneWeb is uniquely positioned to provide a unique perspective on how telecommunications domestic capability can be built in the UK.

...

Satellite constellations are uniquely positioned to provide ubiquitous services and complement mobile network operators’ 5G services offloading their terrestrial networks with satellite connectivity.

With 5G, the satellite network will be developed to interoperate within a 5G architecture, offering functionalities for new use cases, such as connected cars, emergency services, dispersed manufacturing plants and remote sensors for IoT applications, while preserving high-value spectrum for low-latency- services.

Although 5G roll out is happening in urban areas, complete coverage will only be possible via the inclusion of non-terrestrial networks and, in particular, LEO satellite constellations.

The inclusion of the 5G ecosystem is key to the success of these new markets. The fundamental expertise and skills in 5G and small satellites resides in the UK and developing integrated systems represents an opportunity to leverage these into new business creation for such systems in 2020-30. The pathway to full 5G coverage and the realization of its real wealth creation is via satellite extension. Thanks to satellite constellations, like OneWeb, the UK has the exceptional opportunity of recovering an important part of the infrastructural and technological gap by harnessing the world leading expertise in 5G technology and the small satellites constellations to demonstrate extended roll out via low earth orbit (LEO) satellites, complementing the terrestrial 5G system and provide 100% coverage through seamless transition between the two and from a user point of view enjoying ubiquitous 5G services irrespective of geography.

5G will bring many new capabilities compared to previous generations of mobile networks. As well as providing higher throughputs, 5G will enable newer types of applications and services in the domains of health, transport, entertainment, machine-to-machine communications, and security, to name just a few. And Satellite communications will be an essential part of this 5G infrastructure. The satellite transport conduit will be integrated into the overall available communication map. Service providers will need to provide seamless connectivity between terrestrial and satellite. Traffic will be dynamically steered to the best transport options available according to bandwidth, latency, network conditions and other application-specific requirements. Several key changes introduced by 5G provide the scenario of using the service through satellite backhaul.

...

You can read the complete evidence here. Some of their claims of 5G ready from their website have been removed, though you can still watch the video here. In that video, Ruth Pritchard-Kelly, VP Regulatory Affairs, OneWeb is talking about the 5G Non-Terrestrial Networks. You can see our old tutorial here. We have also explained the different orbits of satellites, etc. in our other tutorial about connectivity on planes here.

Anyway, last year OneWeb had to enter chapter 11 bankruptcy filing and then successfully came out of it. We wrote about Starlink a few weeks back. If you are wondering how does Starlink & Oneweb compare, you can head to this excellent article here. The picture below shows the altitude comparison.

Here is a very recent video explaining how the OneWeb system works:

A slightly older version is quite interesting to watch too is here

We wrote a post on ITU Satellite webinars here. Embedded below is a talk from Ruth Pritchard-Kelly, ​Vice President,  Regulatory Affairs, OneWeb. As that is part of a bigger talk, if the video doesn't automatically jump to her talk, move to 1 hour 11 minutes 31 seconds.

As we mentioned, another 36 satellites were just launched. Details in press release here.

OneWeb network capabilities were also demonstrated to the US government. The video below provides the details including the speedtests, latency, etc.

Back in December, I wrote 21 predictions for 2021. Two of my predictions were related to LEO satellites. The first was that they will become commercial reality. The progress from Starlink can be shows this is true while my other prediction said that, "First Open RAN site with LEO satellite for backhaul is trialed with a commercial MNO". Still 9 months for that prophecy to be fulfilled 😉.

Related Posts:

Comments

Popular posts from this blog

High-level Architecture Introduction of Mobile Cellular Networks from 2G to 5G

Here is an old tutorial explaining high level mobile network architecture, starting from GSM and then looking at GPRS, UMTS, LTE & 5G. Slides and video below High-level architecture of Mobile Cellular Networks from 2G to 5G from 3G4G Related links : Free 2G, 3G, 4G & 5G Training Videos 5G (IMT-2020) Wireless 5G vs 4G: what is the difference?

5G Connectivity will Enable New Use Cases

While we have been discussing advanced 5G use cases for years, it is only now, with the Standalone 5G (5G SA) that it is going to become possible to have many of these in practice. Of course they will take time to mature and be popular with the end users. As a part of our Free 5G Training initiative , we made a short video that will provide you with ideas and motivation for why 5G could do a lot more than just faster speeds. The video is embedded below. In addition, Parallel Wireless, one of the companies I consult for, did a webinar on 5G Use Cases which is available here . A good webinar on BrightTALK on 5G Use Cases by @Parallel_tw - https://t.co/AdpLOIOW6u #Free5Gtraining #5G #5GNetworks #5GUseCases #5GSpectrum #eMBB #mMTC #URLLC #5GRoadmaps #OpenRAN #5GXR #FWA #Vodafone #TMobile #Healthcare pic.twitter.com/LV677HrJ2G — 5G Training (@5Gtraining) May 28, 2020 Let us know which one is your favorite and which ones do you think will make operators money.

Fixed Wireless Access (FWA) and the Path to 5G Wireless Wireline Convergence (WWC)

I have covered Fixed Wireless Access (FWA) on The 3G4G Blog here and looked at automated HetNet design which included FWA links here . I have also covered Wireline Wireless Convergence (WWC) as part of 5G and Fixed-Mobile Convergence (FMC) posts. The links to the posts are available at the end. Back in December, Juniper took part in a Light Reading webinar which is being shared as part of this post. With revenues flat and traffic continuing to explode, the unsustainable state of network economics needs another disruption. The 5G deployment cycle offers an insertion opportunity for new converged architectures. Wireless offload solutions can re-route the traffic of data-hogging mobile subscribers over wireline cores built for bandwidth and performance rather than mobile cores (EPC) primarily designed for mobility and portability. The 5G Network Architecture in 3GPP Release-16 allows the convergence of fixed and wireless networks. This also allows many new opportunities as can be se