Skip to main content

Super Uplink to improve 5G Coverage and Speeds

One of the challenges with 5G that many people must have noticed are the poor uplink speeds, especially on the cell edge. While using mid/high-band TDD, these poor uplink characteristics result is a smaller cell size as compared to that of low bands or even 3G/4G. 

This is where Huawei's innovation comes in play. Huawei White Paper on Innovation and Intellectual Property details this as follows:

With the growing adoption of 5G in B2B domains, networks need to offer faster uplink speeds and lower latency without compromising downlink speeds. Huawei has come up with a series of solutions to increase uplink coverage and bandwidth. Our two vital technologies – Uplink & Downlink Decoupling, and Super Uplink – have been accepted by 3GPP as part of the Release 15 and Release 16 specifications for global 5G networks, respectively.

  • Uplink & Downlink Decoupling: Adds low frequency bands for uplink transmission in areas that lack uplink coverage in 3.5 GHz bands. Uses high frequency bands to carry 5G downlink services, and uses low frequency bands to carry 5G uplink services to increase 5G uplink coverage.
  • Super Uplink: Features TDD/FDD coordination, high-band/lowband complementation, and time/frequency domain aggregation. It boosts uplink bandwidth and coverage and greatly reduces latency. As the industry's first time/frequency domain aggregation of TDD and FDD in the uplink frequency band, Super Uplink is a groundbreaking innovation in wireless communications. With its excellent speed and latency, Super Uplink is an optimal solution for both B2B and B2C markets

In a recent press release, China Unicom Beijing and Huawei jointly deployed Super Uplink at more than 1,000 commercial sites in Beijing as part of their joint 5G Capital project established in April 2020. The announcement said:

China Unicom Beijing tested 5G Super Uplink on its commercial networks in 2020. It then went on to deploy the technology at a smaller scale in May 2021. The results show great improvements in network performance, with an increase of 10% to 40% in the overall uplink rate of Super Uplink users and a three-fold increase in the uplink rate of cell edge users. To give more of its users access to such network capabilities and improve the uplink experience across its network, China Unicom Beijing deployed 5G Super Uplink networks in multiple high-density areas, over more than 1,000 sites, across five days in July 2021.

5G Super Uplink was a core innovative step in the 5G Capital project, and is projected to help China Unicom Beijing build high-quality 5G networks. 5G Super Uplink significantly improves uplink capabilities by using TDD 3.5 GHz and FDD 2.1 GHz coordination, high- and low-band complementation, time- and frequency-domain aggregation, and millisecond-level resource scheduling, meeting the high requirements of services such as short video upload and HD live broadcast.

Surprisingly, it wasn't easy to find a nice picture explaining the solution. The image on top is from a presentation here and was the only one we could find with a clear enough explanation. The video explains the working with an example.

Ericsson on the other hand uses Carrier Aggregation based approach to solve the coverage and speeds issue as can be seen in the tweet below.

As we discussed in our blog post yesterday, Qualcomm is demoing Sub-band Half Duplex (SBHD) as a way to improve uplink reliability and speed on the cell edge.

Related Posts

Comments

Popular posts from this blog

IEEE 802.11bn Ultra High Reliability (UHR), a.k.a. Wi-Fi 8

Back in 2020 we looked at the introductory post of Wi-Fi 7 which was followed up by a more detailed post in Feb 2022. We are now following on with an introductory post on the next generation Wi-Fi.  A new paper on arXiv explores the journey towards IEEE 802.11bn Ultra High Reliability (UHR), the amendment that will form the basis of Wi-Fi 8. Quoting selected items from the paper  below: After providing an overview of the nearly completed Wi-Fi 7 standard, we present new use cases calling for further Wi-Fi evolution. We also outline current standardization, certification, and spectrum allocation activities, sharing updates from the newly formed UHR Study Group. We then introduce the disruptive new features envisioned for Wi-Fi 8 and discuss the associated research challenges. Among those, we focus on access point coordination and demonstrate that it could build upon 802.11be multi-link operation to make Ultra High Reliability a reality in Wi-Fi 8. The IEEE 802.11bn UHR: Whose ...

Highlights from XGMF's Conference to Advance Millimetre Wave Technology

On April 1, 2024, two of Japan's leading connectivity organizations—the 5G Mobile Promotion Forum (5GMF) and the Beyond 5G Promotion Consortium (B5GPC)—joined forces to create the XG Mobile Promotion Forum ( XGMF ). This merger symbolizes a pivotal step in accelerating the adoption of next-generation wireless technologies. In May 2024, XGMF's Millimeter Wave Promotion Ad Hoc (Millimeter Wave AH) hosted the International Workshop on Millimeter Wave Dissemination for 5G. This event aimed to foster the adoption of millimeter wave (mmWave) technology in Japan and beyond, drawing an audience of approximately 200 attendees and broadcasting in both English and Japanese. The workshop featured opening remarks by Mr. Naohiko Ogiwara, Director of the Radio Department, Telecommunications Infrastructure Bureau, Ministry of Internal Affairs and Communications (MIC). Key speakers included: Mr. Takanori Mashiko (MIC, slides ) Mr. Sam Gielges (Qualcomm, online - no slides) Mr. Christopher Pric...

Testing, Refining, and Improving Stratospheric Connectivity: NTT Docomo’s HAPS Trials

At MWC 2025, NTT Docomo highlighted its latest initiatives under the NTT Group's "NTT C89" space-business strategy, such as mobile-connectivity services using unmanned vehicles, or high-altitude platform stations (HAPS), that fly in the stratosphere for days or months, using relays to provide mobile connectivity in mountainous and remote areas, including at sea and in the sky. A presentation on NTT C89 Aerospace Business Strategy is available here while a presentation on NTT DOCOMO's Non-Terrestrial Network (NTN) for Extreme Coverage Extension is available here . Stratospheric connectivity, enabled by High Altitude Platform Stations (HAPS), is emerging as a key solution for extending mobile coverage to remote and underserved areas. However, ensuring that these airborne platforms can provide stable, high-quality connectivity requires extensive testing and refinement. At MWC 2025, NTT Docomo showcased its progress in this domain, highlighting multiple real-world trials...