Skip to main content

Key learnings from the 5G VISTA Project in UK

The 5G VISTA (Video in-stadia Technical Architecture) project is part of the UK Government's Department for Digital, Culture, Media, and Sport's (DCMS) 5G Testbeds and Trials programme, a £200 million investment in testbeds and trials across the UK to investigate new ways that 5G can boost productivity, grow existing businesses, and spark new ones. It was completed on 1st April 2022.

The project has tested and demonstrated the potential of 5G Broadcast and Multicast to deliver new and exciting digital experiences to spectators at live events.  The technology developed uses a concept called Further-evolved Multimedia Broadcast and Multicast Service (FeMBMS) technology to support innovative use cases - to both enhance customer experience at events, and increase engagement. Whilst most mobile and internet communications are modelled on a “one-to-one” system, FeMBMS is a “one-to-many” service; it will take a single stream and send it to multiple users.

A group of lucky fans at the match between MK Dons and Ipswich Town on 12th February 2022 were able to try out a prototype of the 5G VISTA app. This allowed them to view six, high-quality live streams of different perspectives of the game - including behind the scenes footage - with the tap of a screen. A short video is embedded below and a much more detailed trials video is available here.

Back in September last year, representatives from organisations including O2, Rohde and Schwarz and TOCA Technical gathered to discuss the potential of 5G technology to transform live events by enhancing viewer experience, allowing venue owners to disseminate crucial event information and unlocking new advertising and sales opportunities.

Video of the tech preview and panel discussion for key contacts and opinion-formers to discover the transformative benefits of 5G broadcast technology and the future of the live event experience.

Details of key learnings are available here. A short extract below:

  • Costs: Creating and maintaining the app; marketing; support infrastructure; content creation; rights management and installation all require a sizeable investment It’s also important to ensure the solution is cost-competitive with Wi-Fi
  • The solution provider should be independent of individual stakeholders. To maximise commercial benefit, content should be made available across all Mobile Network Operators (MNOs), clubs, Original Equipment Manufacturers (OEMs) and rights owners
  • Expected functionality and features from a new app would include
    • Easy access (download and install) via a single app (likely to be the ticket-/ season-holder app) 
    • Intuitive, user-friendly graphical user interface (GUI)
    • Ability to support data-heavy apps including live-streaming video, real-time game and player statistics, live Multiview (choosing camera angle) and replays of goals and key moments
    • Scalable with guaranteed Quality of Service  
    • Retail/concessions/travelling/parking 
    • Engaging social media features (more like Snapchat, TikTok and Substack rather than WhatsApp)
    • Enable user-generated content
  • User data control and privacy: Venue owners and rights holders should decide what content fans can access, capture user data, track usage and target content. In today’s big data and precision marketing world, this kind of control is essential
  • Consumers are indifferent to the underlying technology—and they will not pay extra for a VISTA-like service unless they see a clear benefit  
  • Clarification around content dissemination and exclusivity in relation to rights management is fundamental to the success of any such service 
  • Sports clubs and event organisers want to “own the fans” and have access to their user data. This requires some linkage with ticketing and/or club membership
  • Sports clubs and brands are more trusted than MNOs or social media companies
  • Feeds and management of feeds can be offloaded, but more clarification is needed regarding the management of metadata and streams, and the overall end-to-end service

A final report of the project is available on the UK5G website here. More details on the project are available on UK5G website here and Digital Catapult website here.

Related Posts

Comments

Popular posts from this blog

Highlights from XGMF's Conference to Advance Millimetre Wave Technology

On April 1, 2024, two of Japan's leading connectivity organizations—the 5G Mobile Promotion Forum (5GMF) and the Beyond 5G Promotion Consortium (B5GPC)—joined forces to create the XG Mobile Promotion Forum ( XGMF ). This merger symbolizes a pivotal step in accelerating the adoption of next-generation wireless technologies. In May 2024, XGMF's Millimeter Wave Promotion Ad Hoc (Millimeter Wave AH) hosted the International Workshop on Millimeter Wave Dissemination for 5G. This event aimed to foster the adoption of millimeter wave (mmWave) technology in Japan and beyond, drawing an audience of approximately 200 attendees and broadcasting in both English and Japanese. The workshop featured opening remarks by Mr. Naohiko Ogiwara, Director of the Radio Department, Telecommunications Infrastructure Bureau, Ministry of Internal Affairs and Communications (MIC). Key speakers included: Mr. Takanori Mashiko (MIC, slides ) Mr. Sam Gielges (Qualcomm, online - no slides) Mr. Christopher Pric...

Testing, Refining, and Improving Stratospheric Connectivity: NTT Docomo’s HAPS Trials

At MWC 2025, NTT Docomo highlighted its latest initiatives under the NTT Group's "NTT C89" space-business strategy, such as mobile-connectivity services using unmanned vehicles, or high-altitude platform stations (HAPS), that fly in the stratosphere for days or months, using relays to provide mobile connectivity in mountainous and remote areas, including at sea and in the sky. A presentation on NTT C89 Aerospace Business Strategy is available here while a presentation on NTT DOCOMO's Non-Terrestrial Network (NTN) for Extreme Coverage Extension is available here . Stratospheric connectivity, enabled by High Altitude Platform Stations (HAPS), is emerging as a key solution for extending mobile coverage to remote and underserved areas. However, ensuring that these airborne platforms can provide stable, high-quality connectivity requires extensive testing and refinement. At MWC 2025, NTT Docomo showcased its progress in this domain, highlighting multiple real-world trials...

IEEE 802.11bn Ultra High Reliability (UHR), a.k.a. Wi-Fi 8

Back in 2020 we looked at the introductory post of Wi-Fi 7 which was followed up by a more detailed post in Feb 2022. We are now following on with an introductory post on the next generation Wi-Fi.  A new paper on arXiv explores the journey towards IEEE 802.11bn Ultra High Reliability (UHR), the amendment that will form the basis of Wi-Fi 8. Quoting selected items from the paper  below: After providing an overview of the nearly completed Wi-Fi 7 standard, we present new use cases calling for further Wi-Fi evolution. We also outline current standardization, certification, and spectrum allocation activities, sharing updates from the newly formed UHR Study Group. We then introduce the disruptive new features envisioned for Wi-Fi 8 and discuss the associated research challenges. Among those, we focus on access point coordination and demonstrate that it could build upon 802.11be multi-link operation to make Ultra High Reliability a reality in Wi-Fi 8. The IEEE 802.11bn UHR: Whose ...