Skip to main content

Deutsche Telekom Demonstrates 12 Gbps on 5G Using 6 GHz Band

6 GHz band is in demand for possible use with Wi-Fi or Cellular use. The fate of this band will be decided in the upcoming World Radiocommunication Conference 2023 (WRC-23). In the meantime this has provided license to mobile operators to try new things out.

Recently in a press release, Deutsche Telekom (DT) announced that they have managed to achieve 12 Gbps+ using carrier aggregation (CA) with 5G licensed band. The following is an extract from their press release:

Telekom has set a new world record in mobile radio: In Alzey, a data rate of 12 gigabits per second was measured during tests. Data speed and bandwidth were thus up to twelve times higher than in today's 5G network. These high data rates were made possible by the additional use of the frequency spectrum at 6 gigahertz (6 GHz). These frequencies are not yet available for mobile communications. At the World Radiocommunication Conference in November, the use from 2025 onwards will be discussed.

For the test under real conditions, Telekom equipped a rooftop location in the town of Alzey in Rheinhessen with a 6 GHz antenna. In addition, an antenna was mounted that is already used today for the 5G mobile communications standard and transmits via the 3.6 GHz frequency band. During the measurements at a distance of around 100 metres, around 12 gigabits per second were measured with slight fluctuations. The highest value was 12.3 gigabits per second. To achieve this unprecedented speed in mobile communications, the two 5G data streams - from the 6 GHz spectrum and from the 3.6 GHz spectrum - were bundled. The measurement at 6 GHz alone was already 11 gigabits per second. With the 3.6 GHz spectrum, around 1 gigabit per

The merging of frequency bands for more bandwidth is called "channel bundling" or "carrier aggregation" in technical circles. This principle has been used for LTE and 5G for years. The handsets bundle different frequency bands for more bandwidth and enable higher data rates. As part of usual network modernisations, the 6 GHz band could then additionally go into operation at Telekom's 5G mobile sites. Future smartphone models will be able to use this band.

The 6 GHz frequency spectrum is characterised by its ability to transport large amounts of data quickly. However, these rather short-wave frequencies only reach a few 100 metres. They are particularly suitable for use in inner-city areas because a dense antenna network already exists there and at the same time many customers need a fast network. In Alzey, Telekom has tested with 400 MHz in the 6.425-7.125 MHz range. The first tests with 6 GHz already took place in Bonn in October 2022. There, Telekom had proven that the 6 GHz frequencies are well suited for inner-city areas. With the world record in Alzey, it has now been proven that the additional use of the 6 GHz spectrum can take mobile communications coverage quality to new dimensions.

The following is a video of the demo:

Please click the subtitles for English, if they do not start automatically.

As discussed earlier, the GHz band is already being allocated for Wi-Fi in many parts of the world. You can see the list on Wi-Fi alliance website here.

Related Posts

Comments

Popular posts from this blog

Highlights from XGMF's Conference to Advance Millimetre Wave Technology

On April 1, 2024, two of Japan's leading connectivity organizations—the 5G Mobile Promotion Forum (5GMF) and the Beyond 5G Promotion Consortium (B5GPC)—joined forces to create the XG Mobile Promotion Forum ( XGMF ). This merger symbolizes a pivotal step in accelerating the adoption of next-generation wireless technologies. In May 2024, XGMF's Millimeter Wave Promotion Ad Hoc (Millimeter Wave AH) hosted the International Workshop on Millimeter Wave Dissemination for 5G. This event aimed to foster the adoption of millimeter wave (mmWave) technology in Japan and beyond, drawing an audience of approximately 200 attendees and broadcasting in both English and Japanese. The workshop featured opening remarks by Mr. Naohiko Ogiwara, Director of the Radio Department, Telecommunications Infrastructure Bureau, Ministry of Internal Affairs and Communications (MIC). Key speakers included: Mr. Takanori Mashiko (MIC, slides ) Mr. Sam Gielges (Qualcomm, online - no slides) Mr. Christopher Pric...

Testing, Refining, and Improving Stratospheric Connectivity: NTT Docomo’s HAPS Trials

At MWC 2025, NTT Docomo highlighted its latest initiatives under the NTT Group's "NTT C89" space-business strategy, such as mobile-connectivity services using unmanned vehicles, or high-altitude platform stations (HAPS), that fly in the stratosphere for days or months, using relays to provide mobile connectivity in mountainous and remote areas, including at sea and in the sky. A presentation on NTT C89 Aerospace Business Strategy is available here while a presentation on NTT DOCOMO's Non-Terrestrial Network (NTN) for Extreme Coverage Extension is available here . Stratospheric connectivity, enabled by High Altitude Platform Stations (HAPS), is emerging as a key solution for extending mobile coverage to remote and underserved areas. However, ensuring that these airborne platforms can provide stable, high-quality connectivity requires extensive testing and refinement. At MWC 2025, NTT Docomo showcased its progress in this domain, highlighting multiple real-world trials...

How Do Apple AirTags Work?

Apple AirTags have steadily gained popularity in the smart tag market. A recent report highlighted that 69% of smart tag buyers in late 2024 chose an Apple AirTag. This marks a significant rise from 45% in early 2022. In contrast, Tile, the category pioneer now owned by Life360, has seen its market share fall to 11% from 17% during the same period. Samsung's Galaxy SmartTags now hold second place. Interestingly, the technology behind AirTags resembles concepts like Opportunity Driven Multiple Access (ODMA) or Multihop Cellular Networks (MCNs), which I have previously explored . A similar approach has also been discussed regarding Bluetooth-based Ad-Hoc networks . How Do They Work? AirTags primarily use Bluetooth Low Energy (BLE) to communicate with nearby Apple devices that are part of the Find My network. This vast network consists of millions of Apple devices, including iPhones, iPads, and Macs, which can detect AirTags and securely relay their location back to the owner. Addit...