Skip to main content

HAPSMobile - Bringing Connectivity from the Sky for Unserved Areas & Emergencies


Back in April SoftBank announced the launch of a High Altitude Platform Station (HAPS) business through HAPSMobile, a joint venture between SoftBank and US-based company AeroVironment, Inc. With the aim of constructing a HAPS system that delivers telecommunications network connectivity from the sky for a global business, HAPSMobile developed “HAWK30,” an unmanned aircraft for stratospheric telecommunications platform system that flies at altitudes of approximately 20 kilometers.

HAPS refers to systems where unmanned objects such as aircraft flying in the stratosphere can be operated like telecommunication base stations to deliver connectivity across wide areas. By utilizing HAPS, SoftBank will be able to build stable Internet connection environments at locations unserved by telecommunication networks, such as mountainous terrain, remote islands and developing countries. Furthermore, by efficiently interconnecting with current telecommunication networks, SoftBank will be able to realize wide-area connectivity that spans both the sky and the ground to enable drone utilization, as well as contribute to the adoption of IoT and 5G. Since HAPS can provide stable telecommunications networks without being affected by situations on the ground, the technology is also expected to help assist rescue and recovery efforts during times of disasters.

“HAWK30”, the unmanned aircraft for stratospheric telecommunications platform developed by HAPSMobile, measures approximately 78 meters long. Powered by solar panels on its wings that house 10 propellers, “HAWK30” can fly at speeds of approximately 110 kilometers per hour on average. Since “HAWK30” flies at high altitudes above the clouds, its solar panels are continually powered by sunlight. “HAWK30” can also be flown for long periods that range up to a number of months since it takes advantage of the stratosphere's climate, which sees winds that are relatively gentle year-round.

HAPS Concept Video



The IEEE Article points out:

Nobody expects the high-flying Loon balloons and HAPSMobile’s drones to compete directly with ground-based 5G networks in the near future. Until recently, it hasn’t been easy to develop a balloon or drone platform that is cost-effective enough to even consider using for telecommunications, said Salvatore Candido, principal engineer at Alphabet and CTO of Loon. But such high-flying platforms may help fill the gaps when coverage is lacking in rural or otherwise under-served communities. (Even rural parts of the United States may miss out under current 5G network deployment plans.)

Fleets of balloons and drones could also provide coverage on a temporary basis, such as during a major pre-planned event like the Super Bowl or in the wake of a natural disaster. Nokia previously partnered with Alphabet’s Loon when the latter deployed its experimental balloon fleet to provide basic Internet service to 200,000 people in Puerto Rico after the U.S. island territory was left devastated by Hurricane Maria in 2017. The balloons carried LTE technology from Nokia as part of a broader coalition involving AT&T and T-Mobile.


In a blog post I did couple of years back, I detailed how I was involved in trialling small cells on Helikite with EE (BT). The intention was the same. Provide coverage in rural / remote areas and in case of  disasters and emergency. There, we used the small cells as relays to backhaul on macros far away and in theory, the concept can be extended with mesh links to provide connectivity between helikites. It's all detailed here, here and here.

Related Material:

Comments

Popular posts from this blog

Highlights from XGMF's Conference to Advance Millimetre Wave Technology

On April 1, 2024, two of Japan's leading connectivity organizations—the 5G Mobile Promotion Forum (5GMF) and the Beyond 5G Promotion Consortium (B5GPC)—joined forces to create the XG Mobile Promotion Forum ( XGMF ). This merger symbolizes a pivotal step in accelerating the adoption of next-generation wireless technologies. In May 2024, XGMF's Millimeter Wave Promotion Ad Hoc (Millimeter Wave AH) hosted the International Workshop on Millimeter Wave Dissemination for 5G. This event aimed to foster the adoption of millimeter wave (mmWave) technology in Japan and beyond, drawing an audience of approximately 200 attendees and broadcasting in both English and Japanese. The workshop featured opening remarks by Mr. Naohiko Ogiwara, Director of the Radio Department, Telecommunications Infrastructure Bureau, Ministry of Internal Affairs and Communications (MIC). Key speakers included: Mr. Takanori Mashiko (MIC, slides ) Mr. Sam Gielges (Qualcomm, online - no slides) Mr. Christopher Pric...

Testing, Refining, and Improving Stratospheric Connectivity: NTT Docomo’s HAPS Trials

At MWC 2025, NTT Docomo highlighted its latest initiatives under the NTT Group's "NTT C89" space-business strategy, such as mobile-connectivity services using unmanned vehicles, or high-altitude platform stations (HAPS), that fly in the stratosphere for days or months, using relays to provide mobile connectivity in mountainous and remote areas, including at sea and in the sky. A presentation on NTT C89 Aerospace Business Strategy is available here while a presentation on NTT DOCOMO's Non-Terrestrial Network (NTN) for Extreme Coverage Extension is available here . Stratospheric connectivity, enabled by High Altitude Platform Stations (HAPS), is emerging as a key solution for extending mobile coverage to remote and underserved areas. However, ensuring that these airborne platforms can provide stable, high-quality connectivity requires extensive testing and refinement. At MWC 2025, NTT Docomo showcased its progress in this domain, highlighting multiple real-world trials...

How Do Apple AirTags Work?

Apple AirTags have steadily gained popularity in the smart tag market. A recent report highlighted that 69% of smart tag buyers in late 2024 chose an Apple AirTag. This marks a significant rise from 45% in early 2022. In contrast, Tile, the category pioneer now owned by Life360, has seen its market share fall to 11% from 17% during the same period. Samsung's Galaxy SmartTags now hold second place. Interestingly, the technology behind AirTags resembles concepts like Opportunity Driven Multiple Access (ODMA) or Multihop Cellular Networks (MCNs), which I have previously explored . A similar approach has also been discussed regarding Bluetooth-based Ad-Hoc networks . How Do They Work? AirTags primarily use Bluetooth Low Energy (BLE) to communicate with nearby Apple devices that are part of the Find My network. This vast network consists of millions of Apple devices, including iPhones, iPads, and Macs, which can detect AirTags and securely relay their location back to the owner. Addit...