Skip to main content

The Role of Microwave for 5G Backhaul


Came across this interesting webinar by IHS Markit Technology on 'The role of next gen microwave in the 5G era' with Huawei. The video of that is embedded below. The main speakers include Richard Webb, Research Director, Mobile Backhaul and Small Cells, IHS Markit and Renato Lombardi, Huawei Fellow and Head of Italy Research Center, Huawei Technologies

The evolution of 5G places new demands on the backhaul/fronthaul network and drives technology decisions for operators. As you can see the picture above, Microwave is still expected to play a huge role in case of 5G backhaul.


The webinar explores the challenges for the next generation of transport network in terms of architecture, key performance metrics, and technology solutions as operators seek to deliver more granular services and latency- and bandwidth-sensitive applications, and to support new mobile devices. In particular, it looks at the capabilities of microwave as part of the changing backhaul network as operators roll out enhanced mobile broadband 5G services, plus consider the powerful possibilities delivered by network automation in shaping the future for 5G transport solutions.


Topics discussed in the webinar
- Key challenges and performance criteria for the 5G transport network
- Microwave evolution roadmap for 5G backhaul
- Selecting the right technology mix for the 5G transport network
- The role of network automation in supporting the 5G transport network
- Answers to audience questions during live Q&A


Related posts:

Comments

Popular posts from this blog

Laser Inter-Satellite Links (LISLs) in a Starlink Constellation

When we first talked about Starlink back in 2019 , we saw in the video that the concept involved laser communication to communicate between the satellites. While the initially launched satellites did not have the laser communication mechanism built in, it looks like they are being added to the newer ones.  A report from Fast Company in late 2021 said: One of the next big upgrades in telecom will involve satellites firing lasers at each other—to beam data, not blow stuff up. The upside of replacing traditional radio-frequency communication with lasers, that encode data as pulses of light, can be much like that of deploying fiber-optic cable for terrestrial broadband: much faster speeds and much lower latency. “Laser links in orbit can reduce long-distance latency by as much as 50%, due to higher speed of light in vacuum & shorter path than undersea fiber,” SpaceX founder Elon Musk tweeted in July about the upgrade now beginning for that firm’s Starlink satellite constellation. The

IEEE 802.11bn Ultra High Reliability (UHR), a.k.a. Wi-Fi 8

Back in 2020 we looked at the introductory post of Wi-Fi 7 which was followed up by a more detailed post in Feb 2022. We are now following on with an introductory post on the next generation Wi-Fi.  A new paper on arXiv explores the journey towards IEEE 802.11bn Ultra High Reliability (UHR), the amendment that will form the basis of Wi-Fi 8. Quoting selected items from the paper  below: After providing an overview of the nearly completed Wi-Fi 7 standard, we present new use cases calling for further Wi-Fi evolution. We also outline current standardization, certification, and spectrum allocation activities, sharing updates from the newly formed UHR Study Group. We then introduce the disruptive new features envisioned for Wi-Fi 8 and discuss the associated research challenges. Among those, we focus on access point coordination and demonstrate that it could build upon 802.11be multi-link operation to make Ultra High Reliability a reality in Wi-Fi 8. The IEEE 802.11bn UHR: Whose Study Gro

CSI-RS vs SRS Beamforming

In an issue of Signals Flash by Signals Research Group (SRG), they talked about 2 different types of MIMO. Quoting from their journal, "CSI-RS versus SRS. Those operators that have tested or made token use of MU-MIMO leverage a flavor of MU-MIMO that is based on CSI-RS. The MU-MIMO network we tested was based on SRS, which makes it far more likely to observe sixteen spatial layers (versus eight)." I reached out to Emil Björnson, Visiting Professor at KTH Royal Institute of Technology and Associate Professor at Linköping University to see if he has explained this in any of his videos. Here is what he said: " I'm not talking about 3GPP terminology in any of my videos. But you can listen to the slides that starts around 12:40 in this video (embedded below) . If you are looking for CSI-RS vs SRS based MU-MIMO, then jump to around 12:40 in this video where you can see CSI-RS being referred to as "grid of beams" and SRS is similar to the other option, which is t