Skip to main content

The move to 10G PON from GPON and other PON


A passive optical network (PON) is a fiber-optic telecommunications technology for delivering broadband network access to end-customers. Its architecture implements a point-to-multipoint topology, in which a single optical fiber serves multiple endpoints by using unpowered (passive) fiber optic splitters to divide the fiber bandwidth between multiple access points. Passive optical networks are often referred to as the "last mile" between an Internet service provider (ISP) and its customers.

GPON stands for Gigabit Passive Optical Networks. GPON is a point-to-multi point access mechanism. Its main characteristic is the use of passive splitters in the fibre distribution network, enabling one single feeding fibre from the provider’s central office to serve multiple homes and small businesses.

I first wrote about the GPON standard 12 years back, in 2007. Since then it has evolved and has different flavours.


So while we are still using GPON heavily today, there is already a case being made by vendors like Huawei about why operators need to start investing in 10G PON. This video from Huawei is making case for GPON by showing 10 scenarios where it's needed.



IHS Markit Technology hosted a webinar with Huawei on this very topic.


This slide above makes a case for when 10G PON is needed. Based on the calculations (with caveats of course), if a SP is looking to offer anything above 200 Mbps consistently at home (Fixed Wireless Access) then 10G PON would be required.

Nielsen's Law of Internet Bandwidth is also quoted a few times in the webinar which is another motivator for MNOs to start planning their move to 10G PON. You can read about different Tech Laws for our Industry on 3G4G Blog here.

Anyway, the IHS Markit Webinar is embedded below:



Related Posts:

Comments

Popular posts from this blog

High-level Architecture Introduction of Mobile Cellular Networks from 2G to 5G

Here is an old tutorial explaining high level mobile network architecture, starting from GSM and then looking at GPRS, UMTS, LTE & 5G. Slides and video below High-level architecture of Mobile Cellular Networks from 2G to 5G from 3G4G Related links : Free 2G, 3G, 4G & 5G Training Videos 5G (IMT-2020) Wireless 5G vs 4G: what is the difference?

5G Connectivity will Enable New Use Cases

While we have been discussing advanced 5G use cases for years, it is only now, with the Standalone 5G (5G SA) that it is going to become possible to have many of these in practice. Of course they will take time to mature and be popular with the end users. As a part of our Free 5G Training initiative , we made a short video that will provide you with ideas and motivation for why 5G could do a lot more than just faster speeds. The video is embedded below. In addition, Parallel Wireless, one of the companies I consult for, did a webinar on 5G Use Cases which is available here . A good webinar on BrightTALK on 5G Use Cases by @Parallel_tw - https://t.co/AdpLOIOW6u #Free5Gtraining #5G #5GNetworks #5GUseCases #5GSpectrum #eMBB #mMTC #URLLC #5GRoadmaps #OpenRAN #5GXR #FWA #Vodafone #TMobile #Healthcare pic.twitter.com/LV677HrJ2G — 5G Training (@5Gtraining) May 28, 2020 Let us know which one is your favorite and which ones do you think will make operators money.

Fixed Wireless Access (FWA) and the Path to 5G Wireless Wireline Convergence (WWC)

I have covered Fixed Wireless Access (FWA) on The 3G4G Blog here and looked at automated HetNet design which included FWA links here . I have also covered Wireline Wireless Convergence (WWC) as part of 5G and Fixed-Mobile Convergence (FMC) posts. The links to the posts are available at the end. Back in December, Juniper took part in a Light Reading webinar which is being shared as part of this post. With revenues flat and traffic continuing to explode, the unsustainable state of network economics needs another disruption. The 5G deployment cycle offers an insertion opportunity for new converged architectures. Wireless offload solutions can re-route the traffic of data-hogging mobile subscribers over wireline cores built for bandwidth and performance rather than mobile cores (EPC) primarily designed for mobility and portability. The 5G Network Architecture in 3GPP Release-16 allows the convergence of fixed and wireless networks. This also allows many new opportunities as can be se