Skip to main content

Extreme Long Range Communications for Deep Rural Coverage

NGMN published a whitepaper quietly, like all of their other publications, on the topic of affordable Voice and Data Services for sparsely populated areas, such as Sub-Sahara Africa, but also for higher ARPU markets with wide rural areas, such as North Canada. In many countries there is an obligation on operators providing a minimum level of coverage geographically, rather than population based only. Along with the stick, operators are looking for a carrot to justify their spend on bringing rural connectivity.

The following is an extract from the paper available here [PDF]:

The purpose of the NGMN’s Extreme Long Range Communications for Deep Rural Coverage program is to explore the challenge of addressing rural markets and to create industry momentum around long range communications solutions that are suitable for offering Internet access to rural populations who are underserved today.

A number of options exists for operators to provide coverage; these are:

i. Extending the range of the existing macro sites to up to 40 Km cell radius, where possible
ii. Building new sites for extending coverage into coverage voids, with the highest possible cell radius to maximize population uptake. Suitable locations for new sites would be based on geographical coverage and statistical population growth
iii. Infrastructure sharing between operators, where regulatory environment allows, operators can offer National Roaming between their networks to share subscribers
iv. Utilising Relay nodes to connect to Remote sites
v. Wireless backhauling where the LTE or the NR (5G) spectrum is used to backhaul the traffic from the Remote Site to the Core
vi. Utilising Satellite Backhaul to connect the Remote Site to the Core

In reflection, a number of technologies are at hand that can provide services to sparsely populated areas and two categories require careful considerations:

Category 1- Network Implementations: In this document, we have presented a number of technologies that are at hand which could provide coverage to remote locations, and network operators must find a balance between practical deployment options, deployment costs and projected revenues

Category 2- User Equipment: considering that users from emerging markets in these deep rural environments have low income and cannot afford expensive smartphones, and considering large number of users in these remote areas, there is a practical business rationale for developing low-cost smartphone with new “Long Range Features”

By focusing effort directly on rural connectivity requirements, NGMN can play a role in better connecting these important populations. Technological areas that NGMN could have an influence are as follows:
  • Smartphones with Coverage Extension capabilities and wide bandwidth capabilities. By making IoT-type coverage enhancement standard features of smartphones, MNOs can see increased cell radius for voice and messaging applications, in addition to improved reliability on these services in a range of environments
  • Wider deployment of Node Relay technologies for extending the cell coverage and helping to lower deployment costs for MNOs
  • Encouraging the integration of Non-Terrestrial Networks (NTN) with greatly expanded reach can help MNOs to provide some level of service to most or all of their territory. NTN applications are seen twofold: Non-Terrestrial Networks (NTN), where GEO, MEO or LEO Satellites provide direct LTE or NR(5G) coverage to the users without having to deploy traditional ground based RAN equipment. Utilising inexpensive Satellite backhauls by using LEO Satellites which are either have already been launched or will be launched in the near future
  • Development of cost-effective Terminals with wide connectivity options for either Ground Based Long Range Cell Technologies or Direct Connectivity to Satellite Service 

Related Posts:


Popular posts from this blog

High-level Architecture Introduction of Mobile Cellular Networks from 2G to 5G

Here is an old tutorial explaining high level mobile network architecture, starting from GSM and then looking at GPRS, UMTS, LTE & 5G. Slides and video below High-level architecture of Mobile Cellular Networks from 2G to 5G from 3G4G Related links : Free 2G, 3G, 4G & 5G Training Videos 5G (IMT-2020) Wireless 5G vs 4G: what is the difference?

5G Connectivity will Enable New Use Cases

While we have been discussing advanced 5G use cases for years, it is only now, with the Standalone 5G (5G SA) that it is going to become possible to have many of these in practice. Of course they will take time to mature and be popular with the end users. As a part of our Free 5G Training initiative , we made a short video that will provide you with ideas and motivation for why 5G could do a lot more than just faster speeds. The video is embedded below. In addition, Parallel Wireless, one of the companies I consult for, did a webinar on 5G Use Cases which is available here . A good webinar on BrightTALK on 5G Use Cases by @Parallel_tw - #Free5Gtraining #5G #5GNetworks #5GUseCases #5GSpectrum #eMBB #mMTC #URLLC #5GRoadmaps #OpenRAN #5GXR #FWA #Vodafone #TMobile #Healthcare — 5G Training (@5Gtraining) May 28, 2020 Let us know which one is your favorite and which ones do you think will make operators money.

Fixed Wireless Access (FWA) and the Path to 5G Wireless Wireline Convergence (WWC)

I have covered Fixed Wireless Access (FWA) on The 3G4G Blog here and looked at automated HetNet design which included FWA links here . I have also covered Wireline Wireless Convergence (WWC) as part of 5G and Fixed-Mobile Convergence (FMC) posts. The links to the posts are available at the end. Back in December, Juniper took part in a Light Reading webinar which is being shared as part of this post. With revenues flat and traffic continuing to explode, the unsustainable state of network economics needs another disruption. The 5G deployment cycle offers an insertion opportunity for new converged architectures. Wireless offload solutions can re-route the traffic of data-hogging mobile subscribers over wireline cores built for bandwidth and performance rather than mobile cores (EPC) primarily designed for mobility and portability. The 5G Network Architecture in 3GPP Release-16 allows the convergence of fixed and wireless networks. This also allows many new opportunities as can be se