Skip to main content

Extreme Long Range Communications for Deep Rural Coverage


NGMN published a whitepaper quietly, like all of their other publications, on the topic of affordable Voice and Data Services for sparsely populated areas, such as Sub-Sahara Africa, but also for higher ARPU markets with wide rural areas, such as North Canada. In many countries there is an obligation on operators providing a minimum level of coverage geographically, rather than population based only. Along with the stick, operators are looking for a carrot to justify their spend on bringing rural connectivity.

The following is an extract from the paper available here [PDF]:

The purpose of the NGMN’s Extreme Long Range Communications for Deep Rural Coverage program is to explore the challenge of addressing rural markets and to create industry momentum around long range communications solutions that are suitable for offering Internet access to rural populations who are underserved today.

A number of options exists for operators to provide coverage; these are:

i. Extending the range of the existing macro sites to up to 40 Km cell radius, where possible
ii. Building new sites for extending coverage into coverage voids, with the highest possible cell radius to maximize population uptake. Suitable locations for new sites would be based on geographical coverage and statistical population growth
iii. Infrastructure sharing between operators, where regulatory environment allows, operators can offer National Roaming between their networks to share subscribers
iv. Utilising Relay nodes to connect to Remote sites
v. Wireless backhauling where the LTE or the NR (5G) spectrum is used to backhaul the traffic from the Remote Site to the Core
vi. Utilising Satellite Backhaul to connect the Remote Site to the Core

In reflection, a number of technologies are at hand that can provide services to sparsely populated areas and two categories require careful considerations:

Category 1- Network Implementations: In this document, we have presented a number of technologies that are at hand which could provide coverage to remote locations, and network operators must find a balance between practical deployment options, deployment costs and projected revenues

Category 2- User Equipment: considering that users from emerging markets in these deep rural environments have low income and cannot afford expensive smartphones, and considering large number of users in these remote areas, there is a practical business rationale for developing low-cost smartphone with new “Long Range Features”

By focusing effort directly on rural connectivity requirements, NGMN can play a role in better connecting these important populations. Technological areas that NGMN could have an influence are as follows:
  • Smartphones with Coverage Extension capabilities and wide bandwidth capabilities. By making IoT-type coverage enhancement standard features of smartphones, MNOs can see increased cell radius for voice and messaging applications, in addition to improved reliability on these services in a range of environments
  • Wider deployment of Node Relay technologies for extending the cell coverage and helping to lower deployment costs for MNOs
  • Encouraging the integration of Non-Terrestrial Networks (NTN) with greatly expanded reach can help MNOs to provide some level of service to most or all of their territory. NTN applications are seen twofold: Non-Terrestrial Networks (NTN), where GEO, MEO or LEO Satellites provide direct LTE or NR(5G) coverage to the users without having to deploy traditional ground based RAN equipment. Utilising inexpensive Satellite backhauls by using LEO Satellites which are either have already been launched or will be launched in the near future
  • Development of cost-effective Terminals with wide connectivity options for either Ground Based Long Range Cell Technologies or Direct Connectivity to Satellite Service 

Related Posts:

Comments

Popular posts from this blog

5G Drone Cell Towers

I was involved with looking at how Aerostats & Drones can help bring connectivity, especially in hard to reach areas or in case of disaster recovery and other emergencies. I wrote about it in detail here.

Last month, 3GPP did a summary of all things 3GPP is doing in this area.

To address the needs of a new and quickly maturing sector, there has been a lot of activity in the 3GPP Working Groups to ensure that the 5G system will meet the connectivity needs of Unmanned Aerial Systems (UAS) – consisting of Unmanned Aerial Vehicles (aka. drones) and UAV controllers under the watchful eye of UAS traffic management.

Release 15 - Enhanced LTE Support for Aerial Vehicles (TR 36.777)

A study to Investigate the ability for aerial vehicles to be served using LTE networks is now published, identifying further performance enhancements for UE-based solutions, Network-based solutions, downlink interference mitigation, uplink interference mitigation, mobility performance and aerial UE Identification…

High-level Architecture Introduction of Mobile Cellular Networks from 2G to 5G

Here is an old tutorial explaining high level mobile network architecture, starting from GSM and then looking at GPRS, UMTS, LTE & 5G. Slides and video below


High-level architecture of Mobile Cellular Networks from 2G to 5G from 3G4G
Related links:
Free 2G, 3G, 4G & 5G Training Videos5G (IMT-2020) Wireless5G vs 4G: what is the difference?

"5G Pilot in Galicia" project (#Pilotos5G)

Back in September 2019, the “5G Pilot in Galicia” project, promoted by the Spanish Ministry of Economy and Business through Red.es, was presented in Vigo. This is one of the two pilots, which the Government has promoted for the development of 5G technology through a public call for aid, with an aggregate budget of more than € 36 million, of which more than €10 million will be financed by Red.es through the FEDER.

The project to be developed in Galicia will last 24 months, a budget of more than € 11 million, of which more than € 4 million will be financed from the ERDF, and will have eight use cases in areas such as connected cars, industry 4.0 or healthcare.

This pilot, which is already in the first phase of development, includes eight use cases:
Assistance to driving in the O Cereixal tunnel (Lugo) to test new services that will improve the safety of vehicles through the tunnel (warning of weather conditions at the exit, anomalies inside, among others.)Movistar Fusion service on fixed…