Skip to main content

State of Global Cellular Connectivity in 2019 and 2025

GSMA published their global Mobile Economy report recently. While there were not many surprises for me as I have used it over the years for various presentations and reports, others may be a bit surprised, especially with all the hype around 5G. Before we jump into the numbers, the chart that caught my eye is as shown above.

Coverage gap is easy to understand because these are the people / areas that have no coverage. The usage gap defines people who are in a region covered by some or the other technology but are not connected. There could be various factors in play because of affordability or no need, etc.

The report states that there were 8.0 billion cellular connections (excluding IoT) in 2019 and this will increase to 8.8 billion by 2025. Looking at the mobile connections worldwide, we see that in 2025, there will still be around 5% of the users using 2G (mainly GSM) technology. While this may sound like a small number, this is still roughly 440 millions users worldwide. 18% of the connections will be 3G, which is 1.58 billion in numbers. 5G will be slightly better than 3G with 20% or 1.76 billion connections while the dominant technology will be 4G with 56% or 4.93 billion connections.


All these connectivity technologies will vary significantly from region to region as can be seen above. For example in China, there will hardly be any 2G or 3G left by 2025 while in Sub-Saharn Africa, 3G will be the dominant technology.

I encourage you to dig deep into the report and point out any gems that you find. There is around 60 pages of very valuable details and surely I will be writing more on this topic.

The mobile economy report is available here. The promo video from GSMA is embedded below.



Related Posts:

Comments

Popular posts from this blog

High-level Architecture Introduction of Mobile Cellular Networks from 2G to 5G

Here is an old tutorial explaining high level mobile network architecture, starting from GSM and then looking at GPRS, UMTS, LTE & 5G. Slides and video below High-level architecture of Mobile Cellular Networks from 2G to 5G from 3G4G Related links : Free 2G, 3G, 4G & 5G Training Videos 5G (IMT-2020) Wireless 5G vs 4G: what is the difference?

5G Connectivity will Enable New Use Cases

While we have been discussing advanced 5G use cases for years, it is only now, with the Standalone 5G (5G SA) that it is going to become possible to have many of these in practice. Of course they will take time to mature and be popular with the end users. As a part of our Free 5G Training initiative , we made a short video that will provide you with ideas and motivation for why 5G could do a lot more than just faster speeds. The video is embedded below. In addition, Parallel Wireless, one of the companies I consult for, did a webinar on 5G Use Cases which is available here . A good webinar on BrightTALK on 5G Use Cases by @Parallel_tw - https://t.co/AdpLOIOW6u #Free5Gtraining #5G #5GNetworks #5GUseCases #5GSpectrum #eMBB #mMTC #URLLC #5GRoadmaps #OpenRAN #5GXR #FWA #Vodafone #TMobile #Healthcare pic.twitter.com/LV677HrJ2G — 5G Training (@5Gtraining) May 28, 2020 Let us know which one is your favorite and which ones do you think will make operators money.

Fixed Wireless Access (FWA) and the Path to 5G Wireless Wireline Convergence (WWC)

I have covered Fixed Wireless Access (FWA) on The 3G4G Blog here and looked at automated HetNet design which included FWA links here . I have also covered Wireline Wireless Convergence (WWC) as part of 5G and Fixed-Mobile Convergence (FMC) posts. The links to the posts are available at the end. Back in December, Juniper took part in a Light Reading webinar which is being shared as part of this post. With revenues flat and traffic continuing to explode, the unsustainable state of network economics needs another disruption. The 5G deployment cycle offers an insertion opportunity for new converged architectures. Wireless offload solutions can re-route the traffic of data-hogging mobile subscribers over wireline cores built for bandwidth and performance rather than mobile cores (EPC) primarily designed for mobility and portability. The 5G Network Architecture in 3GPP Release-16 allows the convergence of fixed and wireless networks. This also allows many new opportunities as can be se