Skip to main content

The Potential of Connectivity Technologies Already Available Today

McKinsey Global Institute released a discussion paper titled, "Connected world: An evolution in connectivity beyond the 5G revolution". The report looks at  how connectivity could be deployed in mobility, healthcare, manufacturing, and retail. The use cases identified in these four commercial domains alone could boost global GDP by $1.2 trillion to $2 trillion by 2030. In fact, most of this value can be captured with advanced connectivity, using technologies that is already available today.

The executive summary states:

This raises a puzzling question: Why is so much potential still sitting on the table, and will new technologies alone be enough to realize it? This research looks at the issues holding back the market, with the aim of starting a broader conversation about what it will take to create momentum. It is part of an ongoing body of work that will continue exploring connectivity, including its possibilities in other sectors and its impact across broader economies.

Beyond the implications for industry, connectivity also has ramifications for equity and society. A picture of today’s digital networks superimposed on the planet would confirm that the World Wide Web is not actually worldwide today. There are dark gaps as well as regions of unusual density. In the decade ahead, many of those blank spaces will light up, and billions of new users will come online.

Enabling more people to plug into global flows of information, communication, and services could add another $1.5 trillion to $2 trillion to GDP, above and beyond the economic value of the use cases identified in the four commercial domains highlighted in this research. Although gaps will remain, this trend could unlock greater human potential and prosperity in many developing nations. 



More information available on McKinsey Global Institute

Related Posts:

Comments

Popular posts from this blog

Highlights from XGMF's Conference to Advance Millimetre Wave Technology

On April 1, 2024, two of Japan's leading connectivity organizations—the 5G Mobile Promotion Forum (5GMF) and the Beyond 5G Promotion Consortium (B5GPC)—joined forces to create the XG Mobile Promotion Forum ( XGMF ). This merger symbolizes a pivotal step in accelerating the adoption of next-generation wireless technologies. In May 2024, XGMF's Millimeter Wave Promotion Ad Hoc (Millimeter Wave AH) hosted the International Workshop on Millimeter Wave Dissemination for 5G. This event aimed to foster the adoption of millimeter wave (mmWave) technology in Japan and beyond, drawing an audience of approximately 200 attendees and broadcasting in both English and Japanese. The workshop featured opening remarks by Mr. Naohiko Ogiwara, Director of the Radio Department, Telecommunications Infrastructure Bureau, Ministry of Internal Affairs and Communications (MIC). Key speakers included: Mr. Takanori Mashiko (MIC, slides ) Mr. Sam Gielges (Qualcomm, online - no slides) Mr. Christopher Pric...

IEEE 802.11bn Ultra High Reliability (UHR), a.k.a. Wi-Fi 8

Back in 2020 we looked at the introductory post of Wi-Fi 7 which was followed up by a more detailed post in Feb 2022. We are now following on with an introductory post on the next generation Wi-Fi.  A new paper on arXiv explores the journey towards IEEE 802.11bn Ultra High Reliability (UHR), the amendment that will form the basis of Wi-Fi 8. Quoting selected items from the paper  below: After providing an overview of the nearly completed Wi-Fi 7 standard, we present new use cases calling for further Wi-Fi evolution. We also outline current standardization, certification, and spectrum allocation activities, sharing updates from the newly formed UHR Study Group. We then introduce the disruptive new features envisioned for Wi-Fi 8 and discuss the associated research challenges. Among those, we focus on access point coordination and demonstrate that it could build upon 802.11be multi-link operation to make Ultra High Reliability a reality in Wi-Fi 8. The IEEE 802.11bn UHR: Whose ...

Testing, Refining, and Improving Stratospheric Connectivity: NTT Docomo’s HAPS Trials

At MWC 2025, NTT Docomo highlighted its latest initiatives under the NTT Group's "NTT C89" space-business strategy, such as mobile-connectivity services using unmanned vehicles, or high-altitude platform stations (HAPS), that fly in the stratosphere for days or months, using relays to provide mobile connectivity in mountainous and remote areas, including at sea and in the sky. A presentation on NTT C89 Aerospace Business Strategy is available here while a presentation on NTT DOCOMO's Non-Terrestrial Network (NTN) for Extreme Coverage Extension is available here . Stratospheric connectivity, enabled by High Altitude Platform Stations (HAPS), is emerging as a key solution for extending mobile coverage to remote and underserved areas. However, ensuring that these airborne platforms can provide stable, high-quality connectivity requires extensive testing and refinement. At MWC 2025, NTT Docomo showcased its progress in this domain, highlighting multiple real-world trials...