Skip to main content

The Potential of Connectivity Technologies Already Available Today

McKinsey Global Institute released a discussion paper titled, "Connected world: An evolution in connectivity beyond the 5G revolution". The report looks at  how connectivity could be deployed in mobility, healthcare, manufacturing, and retail. The use cases identified in these four commercial domains alone could boost global GDP by $1.2 trillion to $2 trillion by 2030. In fact, most of this value can be captured with advanced connectivity, using technologies that is already available today.

The executive summary states:

This raises a puzzling question: Why is so much potential still sitting on the table, and will new technologies alone be enough to realize it? This research looks at the issues holding back the market, with the aim of starting a broader conversation about what it will take to create momentum. It is part of an ongoing body of work that will continue exploring connectivity, including its possibilities in other sectors and its impact across broader economies.

Beyond the implications for industry, connectivity also has ramifications for equity and society. A picture of today’s digital networks superimposed on the planet would confirm that the World Wide Web is not actually worldwide today. There are dark gaps as well as regions of unusual density. In the decade ahead, many of those blank spaces will light up, and billions of new users will come online.

Enabling more people to plug into global flows of information, communication, and services could add another $1.5 trillion to $2 trillion to GDP, above and beyond the economic value of the use cases identified in the four commercial domains highlighted in this research. Although gaps will remain, this trend could unlock greater human potential and prosperity in many developing nations. 



More information available on McKinsey Global Institute

Related Posts:

Comments

Popular posts from this blog

Laser Inter-Satellite Links (LISLs) in a Starlink Constellation

When we first talked about Starlink back in 2019 , we saw in the video that the concept involved laser communication to communicate between the satellites. While the initially launched satellites did not have the laser communication mechanism built in, it looks like they are being added to the newer ones.  A report from Fast Company in late 2021 said: One of the next big upgrades in telecom will involve satellites firing lasers at each other—to beam data, not blow stuff up. The upside of replacing traditional radio-frequency communication with lasers, that encode data as pulses of light, can be much like that of deploying fiber-optic cable for terrestrial broadband: much faster speeds and much lower latency. “Laser links in orbit can reduce long-distance latency by as much as 50%, due to higher speed of light in vacuum & shorter path than undersea fiber,” SpaceX founder Elon Musk tweeted in July about the upgrade now beginning for that firm’s Starlink satellite constellation. The

IEEE 802.11bn Ultra High Reliability (UHR), a.k.a. Wi-Fi 8

Back in 2020 we looked at the introductory post of Wi-Fi 7 which was followed up by a more detailed post in Feb 2022. We are now following on with an introductory post on the next generation Wi-Fi.  A new paper on arXiv explores the journey towards IEEE 802.11bn Ultra High Reliability (UHR), the amendment that will form the basis of Wi-Fi 8. Quoting selected items from the paper  below: After providing an overview of the nearly completed Wi-Fi 7 standard, we present new use cases calling for further Wi-Fi evolution. We also outline current standardization, certification, and spectrum allocation activities, sharing updates from the newly formed UHR Study Group. We then introduce the disruptive new features envisioned for Wi-Fi 8 and discuss the associated research challenges. Among those, we focus on access point coordination and demonstrate that it could build upon 802.11be multi-link operation to make Ultra High Reliability a reality in Wi-Fi 8. The IEEE 802.11bn UHR: Whose Study Gro

CSI-RS vs SRS Beamforming

In an issue of Signals Flash by Signals Research Group (SRG), they talked about 2 different types of MIMO. Quoting from their journal, "CSI-RS versus SRS. Those operators that have tested or made token use of MU-MIMO leverage a flavor of MU-MIMO that is based on CSI-RS. The MU-MIMO network we tested was based on SRS, which makes it far more likely to observe sixteen spatial layers (versus eight)." I reached out to Emil Bj√∂rnson, Visiting Professor at KTH Royal Institute of Technology and Associate Professor at Link√∂ping University to see if he has explained this in any of his videos. Here is what he said: " I'm not talking about 3GPP terminology in any of my videos. But you can listen to the slides that starts around 12:40 in this video (embedded below) . If you are looking for CSI-RS vs SRS based MU-MIMO, then jump to around 12:40 in this video where you can see CSI-RS being referred to as "grid of beams" and SRS is similar to the other option, which is t