Skip to main content

Increasing 5G Coverage and Capacity with OPRA (Orthogonal Polarization Reuse Antenna)

Efforts to increase capacity and extend coverage have continued through antenna technology advancements. Increasing capacity by dual orthogonal polarization technology and extending coverage by narrow multi-beam are the best examples. However, dual orthogonal polarization technology results in deterioration of capacity due to correlation by the overlap of polarization in multiple MIMO environments, and narrow multi-beam technology has a limitation that extends coverage. However, capacity increases are low due to the correlation between antenna polarizations. The limitations of these technologies occur because the same polarization is used in the same space, at the same time, and at the same frequency.

In a new whitepaper, KMW announced that they have implemented OPRA that has applied Orthogonal Polarization Reuse to increase capacity and extend coverage simultaneously. KMW is ready to offer a variety of RU products powered by OPRA technology to global partners and customers.

Orthogonal Polarization Reuse, a technique that reuses different polarizations by separating time, space, and frequency, is a new paradigm that satisfies capacity increase and coverage extension by reducing correlation through existing polarization.

OPRA is an Orthogonal Polarization Reuse technology that uses different dual orthogonal polarizations. The representative polarizations used are Slant 45°(±45°) polarization and Vertical / Horizontal(V/H) polarization. OPRA reuses different dual orthogonal polarizations by separating time, space, and frequency to reduce correlation by polarization and increasing capacity, and extending coverage.

OPRA reuses different orthogonal polarizations on multi-beam, significantly reducing the correlation between beams, and increasing capacity by 36% and coverage by 39%. This OPRA technology can be implemented in both the RF domain and digital domain.

OPRA technology gives operators the ability to achieve increased capacity and extended coverage at a low investment cost, and paramountly reducing CapEx and OpEx. 

The whitepaper is available from here.

Here is a promotional video from KMW via RCR Wireless:

Related Posts:

Comments

Popular posts from this blog

Laser Inter-Satellite Links (LISLs) in a Starlink Constellation

When we first talked about Starlink back in 2019 , we saw in the video that the concept involved laser communication to communicate between the satellites. While the initially launched satellites did not have the laser communication mechanism built in, it looks like they are being added to the newer ones.  A report from Fast Company in late 2021 said: One of the next big upgrades in telecom will involve satellites firing lasers at each other—to beam data, not blow stuff up. The upside of replacing traditional radio-frequency communication with lasers, that encode data as pulses of light, can be much like that of deploying fiber-optic cable for terrestrial broadband: much faster speeds and much lower latency. “Laser links in orbit can reduce long-distance latency by as much as 50%, due to higher speed of light in vacuum & shorter path than undersea fiber,” SpaceX founder Elon Musk tweeted in July about the upgrade now beginning for that firm’s Starlink satellite constellation. The

IEEE 802.11bn Ultra High Reliability (UHR), a.k.a. Wi-Fi 8

Back in 2020 we looked at the introductory post of Wi-Fi 7 which was followed up by a more detailed post in Feb 2022. We are now following on with an introductory post on the next generation Wi-Fi.  A new paper on arXiv explores the journey towards IEEE 802.11bn Ultra High Reliability (UHR), the amendment that will form the basis of Wi-Fi 8. Quoting selected items from the paper  below: After providing an overview of the nearly completed Wi-Fi 7 standard, we present new use cases calling for further Wi-Fi evolution. We also outline current standardization, certification, and spectrum allocation activities, sharing updates from the newly formed UHR Study Group. We then introduce the disruptive new features envisioned for Wi-Fi 8 and discuss the associated research challenges. Among those, we focus on access point coordination and demonstrate that it could build upon 802.11be multi-link operation to make Ultra High Reliability a reality in Wi-Fi 8. The IEEE 802.11bn UHR: Whose Study Gro

CSI-RS vs SRS Beamforming

In an issue of Signals Flash by Signals Research Group (SRG), they talked about 2 different types of MIMO. Quoting from their journal, "CSI-RS versus SRS. Those operators that have tested or made token use of MU-MIMO leverage a flavor of MU-MIMO that is based on CSI-RS. The MU-MIMO network we tested was based on SRS, which makes it far more likely to observe sixteen spatial layers (versus eight)." I reached out to Emil Björnson, Visiting Professor at KTH Royal Institute of Technology and Associate Professor at Linköping University to see if he has explained this in any of his videos. Here is what he said: " I'm not talking about 3GPP terminology in any of my videos. But you can listen to the slides that starts around 12:40 in this video (embedded below) . If you are looking for CSI-RS vs SRS based MU-MIMO, then jump to around 12:40 in this video where you can see CSI-RS being referred to as "grid of beams" and SRS is similar to the other option, which is t