Skip to main content

Astranis MicroGEO to help bring Connectivity Capacity to Alaska and Beyond

While we have been talking mostly about LEO satellites in the satellite technology related posts on this blog, Astranis, a startup based in Califonia has been designing small geostationary satellites for internet connectivity. Known as MicroGEO, these smaller and more powerful satellites cost a fraction of what traditional geostationary satellites cost. They can be built faster (12-18 months) compared to the traditional large geo satellites (3-4 years) and can bring connectivity to smaller areas quickly. 

Back in 2019, Astranis signed Pacific Dataport Inc. of Anchorage, Alaska, an Alaskan telecommunications provider, as its first customer. The intention is to cover the entire state of Alaska, including the Aleutian Islands, with Ka-band connectivity for broadband, according to officials from Astranis and Pacific Dataport.

Last month Astranis announced $250 million Series C financing round, valuing the company at $1.4 billion. According to the press release:

Astranis is solving one of the largest challenges facing the modern world: reducing the cost of internet access to get the next four billion people online.

The new funding will be used to significantly expand production of Astranis’s unique microsatellite platform, built to satisfy the significant global demand for affordable broadband. Additionally, Astranis will dramatically accelerate new technology research and development to support its next-generation platforms. That includes the company’s proprietary software-defined radio technology, which increases satellite performance and flexibility, and allows manufacturing at scale, lowering the price point to end-consumers.

Astranis’s satellites can be deployed at a low cost and be built in months, not years. That’s in contrast to traditional satellites that require hundreds of millions of dollars of capital and five or more years to get new capacity online. The smaller size of Astranis’s satellites — just 350 kg, or about 20 times less than traditional satellites — and their deployment into geostationary orbit (GEO) allows Astranis to start providing coverage with just a single MicroGEO satellite and bring capacity online quickly, focusing beams of broadband connectivity right where it’s needed.

Astranis is building small, low-cost telecommunications satellites to connect the four billion people who currently do not have access to the internet. Each spacecraft operates from geostationary orbit (GEO) with a next-generation design of only 350 kg, utilizing a proprietary software-defined radio payload. This unique digital payload technology allows frequency and coverage flexibility, as well as maximum use of valuable spectrum. By owning and operating its satellites and offering them to customers as a turnkey solution, Astranis is able to provide bandwidth-as-a-service and unlock previously unreachable markets. This allows Astranis to launch small, dedicated satellites for small and medium-sized countries, Fortune 500 companies, existing satellite operators, and other customers.

Astranis launched a first test satellite into orbit in 2018 and is now underway with its first commercial program—a satellite to provide broadband internet for Alaska that will more than triple the available bandwidth across the state. The satellite is undergoing assembly, integration, and test and is set for a launch later this year.

Here is a promotional video from them:

CNBC has a detailed article on them here.

In the slightly longer video below, Ryan McLinko, Co-founder and CTO at Astranis, shares his experience on how he contributed to the foundation and scale-up of the company. He discusses the novelty of digital architectures of GEO small satellites based on Software Defined Radio technology, and how an innovative startup company can challenge established industrial players in the most revenue-generating sector of the space industry.

Related Posts:

Comments

Popular posts from this blog

Highlights from XGMF's Conference to Advance Millimetre Wave Technology

On April 1, 2024, two of Japan's leading connectivity organizations—the 5G Mobile Promotion Forum (5GMF) and the Beyond 5G Promotion Consortium (B5GPC)—joined forces to create the XG Mobile Promotion Forum ( XGMF ). This merger symbolizes a pivotal step in accelerating the adoption of next-generation wireless technologies. In May 2024, XGMF's Millimeter Wave Promotion Ad Hoc (Millimeter Wave AH) hosted the International Workshop on Millimeter Wave Dissemination for 5G. This event aimed to foster the adoption of millimeter wave (mmWave) technology in Japan and beyond, drawing an audience of approximately 200 attendees and broadcasting in both English and Japanese. The workshop featured opening remarks by Mr. Naohiko Ogiwara, Director of the Radio Department, Telecommunications Infrastructure Bureau, Ministry of Internal Affairs and Communications (MIC). Key speakers included: Mr. Takanori Mashiko (MIC, slides ) Mr. Sam Gielges (Qualcomm, online - no slides) Mr. Christopher Pric...

Testing, Refining, and Improving Stratospheric Connectivity: NTT Docomo’s HAPS Trials

At MWC 2025, NTT Docomo highlighted its latest initiatives under the NTT Group's "NTT C89" space-business strategy, such as mobile-connectivity services using unmanned vehicles, or high-altitude platform stations (HAPS), that fly in the stratosphere for days or months, using relays to provide mobile connectivity in mountainous and remote areas, including at sea and in the sky. A presentation on NTT C89 Aerospace Business Strategy is available here while a presentation on NTT DOCOMO's Non-Terrestrial Network (NTN) for Extreme Coverage Extension is available here . Stratospheric connectivity, enabled by High Altitude Platform Stations (HAPS), is emerging as a key solution for extending mobile coverage to remote and underserved areas. However, ensuring that these airborne platforms can provide stable, high-quality connectivity requires extensive testing and refinement. At MWC 2025, NTT Docomo showcased its progress in this domain, highlighting multiple real-world trials...

How Do Apple AirTags Work?

Apple AirTags have steadily gained popularity in the smart tag market. A recent report highlighted that 69% of smart tag buyers in late 2024 chose an Apple AirTag. This marks a significant rise from 45% in early 2022. In contrast, Tile, the category pioneer now owned by Life360, has seen its market share fall to 11% from 17% during the same period. Samsung's Galaxy SmartTags now hold second place. Interestingly, the technology behind AirTags resembles concepts like Opportunity Driven Multiple Access (ODMA) or Multihop Cellular Networks (MCNs), which I have previously explored . A similar approach has also been discussed regarding Bluetooth-based Ad-Hoc networks . How Do They Work? AirTags primarily use Bluetooth Low Energy (BLE) to communicate with nearby Apple devices that are part of the Find My network. This vast network consists of millions of Apple devices, including iPhones, iPads, and Macs, which can detect AirTags and securely relay their location back to the owner. Addit...