Skip to main content

ETSI's F5G ISG releases Fixed 5G (F5G) Technology Landscape Specifications

ETSI's Fixed 5th Generation Network group (F5G ISG) has just released its first specification, ETSI GS F5G 003, entitled F5G Technology Landscape. In this specification, the ISG studies the technical requirements, existing standards and gaps for 10 different new use cases, for home, enterprises or industrial needs.

The press release says: 

ETSI GS F5G 003 use cases include PON (passive optical network) on-premises and passive optical LAN. In this case, a PON system could connect end devices (like HDTV, HD surveillance cameras and VR/AR helmets) and provide higher data rate, better coordination and controlled latency than current Ethernet and Wi-Fi mesh.

The high quality private line use case focuses on optical transport networks (OTN) for governments, large companies, financial and medical institutions who need guaranteed bandwidth, low latency, five-nines availability, totally secured network, access to Cloud services and intelligent operation and maintenance of their connectivity. PON enables high quality but low cost private lines for SMEs and offers higher performance, lower cost, better industrial adaptation, and easier operation for the industrial customers as well.

As an integrated fixed network, F5G can support scenario based broadband and Multiple access aggregation over PON (MAAP), providing various services to multiple types of customers on the same network and guarantee the SLA for each service. Other use cases describe remote attestation, Digitalized ODN/FTTX. Telemetry-based enhanced performance monitoring in intelligent access network supports high bandwidth and latency sensitive services (AR, VR, online gaming, etc.) to end users enabling network operators to monitor the traffic variation in order of seconds and adjust the network configuration accordingly. The Cloud Virtual Reality use case introduces network requirements to support cloud-based VR gaming and video.

Fibre and fibre-based optical networks are the key technical enablers of our society's twin transitions (green and digital), providing sustainable and cost-effective communication with high bandwidth, stability, reliability, and improved latency. In addition, the fibre evolution enables sustainable economic growth through advanced services and applications for users, businesses, and industries.

Related Posts:

Comments

Popular posts from this blog

High-level Architecture Introduction of Mobile Cellular Networks from 2G to 5G

Here is an old tutorial explaining high level mobile network architecture, starting from GSM and then looking at GPRS, UMTS, LTE & 5G. Slides and video below High-level architecture of Mobile Cellular Networks from 2G to 5G from 3G4G Related links : Free 2G, 3G, 4G & 5G Training Videos 5G (IMT-2020) Wireless 5G vs 4G: what is the difference?

IEEE 802.11be Extremely High Throughput (EHT), a.k.a. Wi-Fi 7

We have been writing about Wi-Fi for a long time, weather it's to do with indoor connectivity , competition with 5G or just a name change to something simpler. When we last wrote about WiFi 6, a.k.a. 802.11ax, we were expecting a quick adoption of the technology in the industry. We are still not there yet.  You know what's strange? None of the new @madebygoogle gadgets from yesterday support Wi-Fi 6. Not the Pixel 5, not the Pixel 4a 5G, not the Nest Audio, and not the new Chromecast. pic.twitter.com/QtJ8iB9FeO — Ry Crist (@rycrist) October 1, 2020 Take for instance the new iPhone 12 supports Wi-Fi 6 in all their models as one would expect but none of the new Google Pixel phones (4a, 4a 5G and 5) support it. In fact none of the new Google devices support it. Which is rather bizarre. While we are still looking forward to Wi-Fi 6 becoming widespread, IEEE has already started working on the successor of 802.11ax, 802.11be - Standard for Information technology--Telecommunicati

CSI-RS vs SRS Beamforming

In an issue of Signals Flash by Signals Research Group (SRG), they talked about 2 different types of MIMO. Quoting from their journal, "CSI-RS versus SRS. Those operators that have tested or made token use of MU-MIMO leverage a flavor of MU-MIMO that is based on CSI-RS. The MU-MIMO network we tested was based on SRS, which makes it far more likely to observe sixteen spatial layers (versus eight)." I reached out to Emil Bj√∂rnson, Visiting Professor at KTH Royal Institute of Technology and Associate Professor at Link√∂ping University to see if he has explained this in any of his videos. Here is what he said: " I'm not talking about 3GPP terminology in any of my videos. But you can listen to the slides that starts around 12:40 in this video (embedded below) . If you are looking for CSI-RS vs SRS based MU-MIMO, then jump to around 12:40 in this video where you can see CSI-RS being referred to as "grid of beams" and SRS is similar to the other option, which is t