Skip to main content

Introduction to Radar – the Challenges and Opportunities

Radio (or Radiation) Detection and Ranging, a.k.a. RADAR is a detection system that uses radio waves to determine the distance (ranging), angle, and radial velocity of objects relative to the site. The modern uses of radar are highly diverse, including air and terrestrial traffic control, radar astronomy, air-defense systems, antimissile systems, marine radars to locate landmarks and other ships, aircraft anti-collision systems, ocean surveillance systems, outer space surveillance and rendezvous systems, meteorological precipitation monitoring, altimetry and flight control systems, guided missile target locating systems, self-driving cars, and ground-penetrating radar for geological observations.

Radar is an important sensor in the autonomous cars. Typically, an autonomous car will have Lidar to scan the environment, Radar to identify the objects and Sonar to hear the objects. In our video of Tesla Model 3, we saw that the Forward-looking Radar is the primary sensor used to detect the vehicle's surroundings, along with the front-facing cameras. It’s used by Autopilot to see up to 160m ahead of the car, through "sand, snow, fog--almost anything," according to Elon Musk. 

In a new video, engineer James Henderson from Plextek provides an Introduction to Radar Systems. Plextek has a long heritage in the development of optimal RF solutions specifically designed to meet the needs of high-performance radar and communication applications. They’ve built their business on radar & communications technology, and offer design support throughout the product lifecycle. This includes specifying the most suitable radar technology or designing a bespoke system through to product approvals and manufacturing.

The video covers the following topics:

  • What is Radar?
  • Pulsed Radar
  • Radar Beam Scanning Techniques
  • Mechanical Scanning Example
  • Passive Electronically Scanned Radar Example
  • Millimeter Wave μ-Radar
  • Ubiquitous/MIMO Radar Approach
  • SAR – Synthetic Aperture Radar

Related Posts

Comments

Popular posts from this blog

IEEE 802.11be Extremely High Throughput (EHT), a.k.a. Wi-Fi 7

We have been writing about Wi-Fi for a long time, weather it's to do with indoor connectivity , competition with 5G or just a name change to something simpler. When we last wrote about WiFi 6, a.k.a. 802.11ax, we were expecting a quick adoption of the technology in the industry. We are still not there yet.  You know what's strange? None of the new @madebygoogle gadgets from yesterday support Wi-Fi 6. Not the Pixel 5, not the Pixel 4a 5G, not the Nest Audio, and not the new Chromecast. pic.twitter.com/QtJ8iB9FeO — Ry Crist (@rycrist) October 1, 2020 Take for instance the new iPhone 12 supports Wi-Fi 6 in all their models as one would expect but none of the new Google Pixel phones (4a, 4a 5G and 5) support it. In fact none of the new Google devices support it. Which is rather bizarre. While we are still looking forward to Wi-Fi 6 becoming widespread, IEEE has already started working on the successor of 802.11ax, 802.11be - Standard for Information technology--Telecommunicati

High-level Architecture Introduction of Mobile Cellular Networks from 2G to 5G

Here is an old tutorial explaining high level mobile network architecture, starting from GSM and then looking at GPRS, UMTS, LTE & 5G. Slides and video below High-level architecture of Mobile Cellular Networks from 2G to 5G from 3G4G Related links : Free 2G, 3G, 4G & 5G Training Videos 5G (IMT-2020) Wireless 5G vs 4G: what is the difference?

CSI-RS vs SRS Beamforming

In an issue of Signals Flash by Signals Research Group (SRG), they talked about 2 different types of MIMO. Quoting from their journal, "CSI-RS versus SRS. Those operators that have tested or made token use of MU-MIMO leverage a flavor of MU-MIMO that is based on CSI-RS. The MU-MIMO network we tested was based on SRS, which makes it far more likely to observe sixteen spatial layers (versus eight)." I reached out to Emil Björnson, Visiting Professor at KTH Royal Institute of Technology and Associate Professor at Linköping University to see if he has explained this in any of his videos. Here is what he said: " I'm not talking about 3GPP terminology in any of my videos. But you can listen to the slides that starts around 12:40 in this video (embedded below) . If you are looking for CSI-RS vs SRS based MU-MIMO, then jump to around 12:40 in this video where you can see CSI-RS being referred to as "grid of beams" and SRS is similar to the other option, which is t