Skip to main content

Haptics and Telepresence with 5G Connectivity

Back in 2019 when Vodafone UK launched 5G, they demonstrated it with a remote rugby tackle where Wasps Rugby player Juan de Jongh felt the impact of a tackle made 100 miles away by team mate Will Rowlands while wearing a haptic Teslasuit connected over 5G (and Wi-Fi).  

Since then Vodafone UK have use the haptics for some other use cases too.

One recent use case was to allow deaf and hard-of-hearing music fans to experience live music like never before. Vodafone unveiled some innovative 5G-enabled haptic suits that allowed people to feel the music through vibrations. 

These vibrations were delivered across 24 touchpoints on the wrists, ankles and torso to provide a full multi-sensory experience. You can read all about that here and watch the video below:

In another Telepresence demonstration, Vodafone showed comedian Jon Richardson sitting in a hotel room in Las Vegas, wearing haptic gloves linked to a computer, feeling his wife's face more than 5,000 miles away in London.

You can read more about this and other use cases and the technology on Vodafone blog here.

Related Posts

Comments

Popular posts from this blog

Laser Inter-Satellite Links (LISLs) in a Starlink Constellation

When we first talked about Starlink back in 2019 , we saw in the video that the concept involved laser communication to communicate between the satellites. While the initially launched satellites did not have the laser communication mechanism built in, it looks like they are being added to the newer ones.  A report from Fast Company in late 2021 said: One of the next big upgrades in telecom will involve satellites firing lasers at each other—to beam data, not blow stuff up. The upside of replacing traditional radio-frequency communication with lasers, that encode data as pulses of light, can be much like that of deploying fiber-optic cable for terrestrial broadband: much faster speeds and much lower latency. “Laser links in orbit can reduce long-distance latency by as much as 50%, due to higher speed of light in vacuum & shorter path than undersea fiber,” SpaceX founder Elon Musk tweeted in July about the upgrade now beginning for that firm’s Starlink satellite constellation. The

CSI-RS vs SRS Beamforming

In an issue of Signals Flash by Signals Research Group (SRG), they talked about 2 different types of MIMO. Quoting from their journal, "CSI-RS versus SRS. Those operators that have tested or made token use of MU-MIMO leverage a flavor of MU-MIMO that is based on CSI-RS. The MU-MIMO network we tested was based on SRS, which makes it far more likely to observe sixteen spatial layers (versus eight)." I reached out to Emil Björnson, Visiting Professor at KTH Royal Institute of Technology and Associate Professor at Linköping University to see if he has explained this in any of his videos. Here is what he said: " I'm not talking about 3GPP terminology in any of my videos. But you can listen to the slides that starts around 12:40 in this video (embedded below) . If you are looking for CSI-RS vs SRS based MU-MIMO, then jump to around 12:40 in this video where you can see CSI-RS being referred to as "grid of beams" and SRS is similar to the other option, which is t

IEEE 802.11be Extremely High Throughput (EHT), a.k.a. Wi-Fi 7

We have been writing about Wi-Fi for a long time, weather it's to do with indoor connectivity , competition with 5G or just a name change to something simpler. When we last wrote about WiFi 6, a.k.a. 802.11ax, we were expecting a quick adoption of the technology in the industry. We are still not there yet.  You know what's strange? None of the new @madebygoogle gadgets from yesterday support Wi-Fi 6. Not the Pixel 5, not the Pixel 4a 5G, not the Nest Audio, and not the new Chromecast. pic.twitter.com/QtJ8iB9FeO — Ry Crist (@rycrist) October 1, 2020 Take for instance the new iPhone 12 supports Wi-Fi 6 in all their models as one would expect but none of the new Google Pixel phones (4a, 4a 5G and 5) support it. In fact none of the new Google devices support it. Which is rather bizarre. While we are still looking forward to Wi-Fi 6 becoming widespread, IEEE has already started working on the successor of 802.11ax, 802.11be - Standard for Information technology--Telecommunicati