Skip to main content

Connecting Large Offshore Wind Farms with Private LTE & 5G Networks

Offshore wind farms are typically located in remote areas, making it challenging to establish reliable connectivity using public mobile networks. Private mobile networks allow wind farm operators to deploy dedicated coverage in the vicinity of the wind farm, ensuring consistent and high-quality network connectivity.

UK-based wireless telecommunications provider, Vilicom, is providing a cloud-enabled private mobile network for the Moray East wind farm for Vestas. A press release, couple of years back, explained what they were doing: 

Currently in its construction phase 20 miles off the Scottish coast, the Moray East wind farm will comprise of 100 V164-9.5 MW units, giving a combined total power output of 950 MW across its impressive 295km2 plot. The turbines, supplied by Vestas, will generate sufficient power to supply clean energy to approximately one million households across the United Kingdom.

Moray East will bring more low-carbon power to the UK, and will continue to support the local area, bolstering economic growth. It will also make a significant contribution towards the UK’s goal for renewable electricity generation and will aid in achieving the UK's energy security and carbon reduction objectives.

Vilicom has designed the most advanced and innovative network based on cloud network techniques that combine the reliability of always-on IT systems, with new innovations in the field of Open Radio Access Network (ORAN) and Core Network Function Virtualization.

Seàn Keating, Chairman at Vilicom, presented a talk on 'Private Cellular in Offshore Wind Farms' during UPTIME 2022. It is embedded below:

More recently, Vilicom, a BAI Communications (BAI) company, announced the successful live deployment of a Vodafone 4G mobile network at the world’s largest offshore wind farm in operation, Hornsea 2, 55 miles off the Yorkshire coast in England.

The press release said:

The wind farm, which has just been completed by global leader in offshore wind Ørsted, spans a 472km2 area in the North Sea and comprises 165 8.4MW turbines expected to generate a combined total power output of 1.4GW. It will be capable of powering over 1.4 million UK homes with clean electricity.

Vilicom and Vodafone teams worked closely for two years to build the communication infrastructure in tandem with the construction of the wind farm, which now supports a live Vodafone 4G mobile service across the entire wind farm. This is welcome news to Ørsted, its staff and all users and vessels who can now seamlessly enjoy the same Vodafone reliable network experience as they do onshore.

The network provides Vodafone 4G mobile connectivity for the hundreds of operational and maintenance staff employed on the site, both across the sail route and spanning the entire wind farm. Vilicom has built and will power the critical communications infrastructure to enable workers to access the data and information systems needed for the operation of the wind farm, as well as giving them the ability to stay connected with family and friends using their personal devices.

During the construction phase, Vilicom also delivered a temporary solution to provide connectivity to the employees working across a five-vessel fleet of floating offices. Hornsea 2 will continue to support opportunities for economic growth in the Humber region, as it contributes to the UK’s goal for renewable electricity generation in the context of a growing energy crisis.

Further details on Vodafone news here.

Related Posts

Comments

Popular posts from this blog

Highlights from XGMF's Conference to Advance Millimetre Wave Technology

On April 1, 2024, two of Japan's leading connectivity organizations—the 5G Mobile Promotion Forum (5GMF) and the Beyond 5G Promotion Consortium (B5GPC)—joined forces to create the XG Mobile Promotion Forum ( XGMF ). This merger symbolizes a pivotal step in accelerating the adoption of next-generation wireless technologies. In May 2024, XGMF's Millimeter Wave Promotion Ad Hoc (Millimeter Wave AH) hosted the International Workshop on Millimeter Wave Dissemination for 5G. This event aimed to foster the adoption of millimeter wave (mmWave) technology in Japan and beyond, drawing an audience of approximately 200 attendees and broadcasting in both English and Japanese. The workshop featured opening remarks by Mr. Naohiko Ogiwara, Director of the Radio Department, Telecommunications Infrastructure Bureau, Ministry of Internal Affairs and Communications (MIC). Key speakers included: Mr. Takanori Mashiko (MIC, slides ) Mr. Sam Gielges (Qualcomm, online - no slides) Mr. Christopher Pric...

Testing, Refining, and Improving Stratospheric Connectivity: NTT Docomo’s HAPS Trials

At MWC 2025, NTT Docomo highlighted its latest initiatives under the NTT Group's "NTT C89" space-business strategy, such as mobile-connectivity services using unmanned vehicles, or high-altitude platform stations (HAPS), that fly in the stratosphere for days or months, using relays to provide mobile connectivity in mountainous and remote areas, including at sea and in the sky. A presentation on NTT C89 Aerospace Business Strategy is available here while a presentation on NTT DOCOMO's Non-Terrestrial Network (NTN) for Extreme Coverage Extension is available here . Stratospheric connectivity, enabled by High Altitude Platform Stations (HAPS), is emerging as a key solution for extending mobile coverage to remote and underserved areas. However, ensuring that these airborne platforms can provide stable, high-quality connectivity requires extensive testing and refinement. At MWC 2025, NTT Docomo showcased its progress in this domain, highlighting multiple real-world trials...

How Do Apple AirTags Work?

Apple AirTags have steadily gained popularity in the smart tag market. A recent report highlighted that 69% of smart tag buyers in late 2024 chose an Apple AirTag. This marks a significant rise from 45% in early 2022. In contrast, Tile, the category pioneer now owned by Life360, has seen its market share fall to 11% from 17% during the same period. Samsung's Galaxy SmartTags now hold second place. Interestingly, the technology behind AirTags resembles concepts like Opportunity Driven Multiple Access (ODMA) or Multihop Cellular Networks (MCNs), which I have previously explored . A similar approach has also been discussed regarding Bluetooth-based Ad-Hoc networks . How Do They Work? AirTags primarily use Bluetooth Low Energy (BLE) to communicate with nearby Apple devices that are part of the Find My network. This vast network consists of millions of Apple devices, including iPhones, iPads, and Macs, which can detect AirTags and securely relay their location back to the owner. Addit...