Skip to main content

Is LTE Cat 1bis Uniting the Fragmented Cellular IoT Market?

There are just too many options when it comes to IoT. LoRaWAN is probably the winner from the unlicensed camp with plethora of other options also available. On the licensed front while LTE-M and NB-IoT haven't enjoyed the success they were touted to, other cIoT options aren't doing that badly.

In their recently released whitepaper entitled, 'Understanding the benefits of LTE Cat 1bis technology', Qualcomm explains:

LTE-M and NB-IoT are two IoT-specific standards introduced in 3GPP release 13. They provide low power operation, extended coverage range and low data rate; they are aptly called low-power wide area networking, or LPWAN technologies. In Release 13, LTE Cat 1bis was also added to the standards. Cat 1bis requires one receive- (Rx) antenna, making it easier and cheaper to build devices in smaller form factors. Recently, IoT use cases involving drones and industrial automation have evolved, requiring either higher throughput, lower latency or both. 5G or higher-category LTE devices (LTE Cat 16) are suitable for such use cases.

Rel-17 introduces the RedCap (also known as NR-Light) – reduced capability – modem. RedCap is the 5G equivalent of the LTE Cat 4 modem, allowing data rates of approximately 200 Mbps using sub-6GHz spectrum. Rel-18 takes that a step further and brings in support for IoT-centric eRedCap (enhanced RedCap) modems offering data rates from 10 to 15 Mbps, the 5G equivalent of LTE Cat 1bis.

Cat 1bis and eRedCap are complementary technologies, with eRedCap providing an evolution path to Cat 1bis.

There is still quite limited availability of LTE-M and NB-IoT networks. This has definitely encouraged smaller operators to stick with LTE Cat1 and now Cat 1bis for offering IoT services. With the evolution path of moving on to eRedCap, it will just make the case for Cat 1bis stronger.

Some additional info from Qualcomm on this topic:

eMTC technologies like LTE Cat NB2 (NB-IoT) and LTE-M require operators to upgrade software on their networks — a big speed bump on the road to adoption. LTE Cat 1bis devices, on the other hand, operate on the same LTE network on which our cell phones run. No network upgrade is necessary.

The LTE network treats a Cat 1bis device as it does a Cat 1 device, with one important difference: Cat 1bis requires a single receive- (Rx) antenna instead of the two antennas used in Cat 1.

And unlike eMTC, there is no need to reserve network capacity for coexistence with LTE. Cat 1bis devices do not need dedicated bandwidth; they coexist with regular LTE Cat 1 devices, Cat 4 devices and smartphones on the same network and spectrum.

Related Posts

Comments

Popular posts from this blog

Highlights from XGMF's Conference to Advance Millimetre Wave Technology

On April 1, 2024, two of Japan's leading connectivity organizations—the 5G Mobile Promotion Forum (5GMF) and the Beyond 5G Promotion Consortium (B5GPC)—joined forces to create the XG Mobile Promotion Forum ( XGMF ). This merger symbolizes a pivotal step in accelerating the adoption of next-generation wireless technologies. In May 2024, XGMF's Millimeter Wave Promotion Ad Hoc (Millimeter Wave AH) hosted the International Workshop on Millimeter Wave Dissemination for 5G. This event aimed to foster the adoption of millimeter wave (mmWave) technology in Japan and beyond, drawing an audience of approximately 200 attendees and broadcasting in both English and Japanese. The workshop featured opening remarks by Mr. Naohiko Ogiwara, Director of the Radio Department, Telecommunications Infrastructure Bureau, Ministry of Internal Affairs and Communications (MIC). Key speakers included: Mr. Takanori Mashiko (MIC, slides ) Mr. Sam Gielges (Qualcomm, online - no slides) Mr. Christopher Pric...

IEEE 802.11bn Ultra High Reliability (UHR), a.k.a. Wi-Fi 8

Back in 2020 we looked at the introductory post of Wi-Fi 7 which was followed up by a more detailed post in Feb 2022. We are now following on with an introductory post on the next generation Wi-Fi.  A new paper on arXiv explores the journey towards IEEE 802.11bn Ultra High Reliability (UHR), the amendment that will form the basis of Wi-Fi 8. Quoting selected items from the paper  below: After providing an overview of the nearly completed Wi-Fi 7 standard, we present new use cases calling for further Wi-Fi evolution. We also outline current standardization, certification, and spectrum allocation activities, sharing updates from the newly formed UHR Study Group. We then introduce the disruptive new features envisioned for Wi-Fi 8 and discuss the associated research challenges. Among those, we focus on access point coordination and demonstrate that it could build upon 802.11be multi-link operation to make Ultra High Reliability a reality in Wi-Fi 8. The IEEE 802.11bn UHR: Whose ...

Testing, Refining, and Improving Stratospheric Connectivity: NTT Docomo’s HAPS Trials

At MWC 2025, NTT Docomo highlighted its latest initiatives under the NTT Group's "NTT C89" space-business strategy, such as mobile-connectivity services using unmanned vehicles, or high-altitude platform stations (HAPS), that fly in the stratosphere for days or months, using relays to provide mobile connectivity in mountainous and remote areas, including at sea and in the sky. A presentation on NTT C89 Aerospace Business Strategy is available here while a presentation on NTT DOCOMO's Non-Terrestrial Network (NTN) for Extreme Coverage Extension is available here . Stratospheric connectivity, enabled by High Altitude Platform Stations (HAPS), is emerging as a key solution for extending mobile coverage to remote and underserved areas. However, ensuring that these airborne platforms can provide stable, high-quality connectivity requires extensive testing and refinement. At MWC 2025, NTT Docomo showcased its progress in this domain, highlighting multiple real-world trials...