Skip to main content

Will 5G make IoT mainstream?

This is definitely a billion (or millions of) dollar(s) question. Anyone even remotely familiar with 5G will know that one of the use cases for 5G is mMTC or massive 'Machine Type Communications' (MTC - 3GPP defined name for M2M). We also looked at, not so long back, that even though it was predicted that there would be 50 billion cellular IoT devices by 2020, the total number is far behind.

In another recent post we argued that the IoT traffic will be shifting from 2G to 4G over the next few years because of the uncertainty of 2G networks in many countries after 2030. This has led to many IoT devices manufacturers to start thinking about not just 4G but also 5G. 

At the Telecoms Europe 5G conference back in November 2021, Erik Brenneis, CEO of Vodafone IoT presented their vision on how IoT is already mainstream and how IoT will make 5G mainstream. Here is the summary of his talk:

5G promises to be 10x faster than current LTE networks. This increase in speed will allow IoT devices to communicate and share data faster than ever. IoT connected devices are set to increase from 700 million to 3.2 billion by 2023. 5G is the most important facilitator for this revolution.

The video of his talk is embedded below: 

A recently published post by Erik on Enterprise IoT Insights, 'Five trends that will shape the next decade in IoT' is also worth reading.

Related Posts:

Comments

Popular posts from this blog

Laser Inter-Satellite Links (LISLs) in a Starlink Constellation

When we first talked about Starlink back in 2019 , we saw in the video that the concept involved laser communication to communicate between the satellites. While the initially launched satellites did not have the laser communication mechanism built in, it looks like they are being added to the newer ones.  A report from Fast Company in late 2021 said: One of the next big upgrades in telecom will involve satellites firing lasers at each other—to beam data, not blow stuff up. The upside of replacing traditional radio-frequency communication with lasers, that encode data as pulses of light, can be much like that of deploying fiber-optic cable for terrestrial broadband: much faster speeds and much lower latency. “Laser links in orbit can reduce long-distance latency by as much as 50%, due to higher speed of light in vacuum & shorter path than undersea fiber,” SpaceX founder Elon Musk tweeted in July about the upgrade now beginning for that firm’s Starlink satellite constellation. The

CSI-RS vs SRS Beamforming

In an issue of Signals Flash by Signals Research Group (SRG), they talked about 2 different types of MIMO. Quoting from their journal, "CSI-RS versus SRS. Those operators that have tested or made token use of MU-MIMO leverage a flavor of MU-MIMO that is based on CSI-RS. The MU-MIMO network we tested was based on SRS, which makes it far more likely to observe sixteen spatial layers (versus eight)." I reached out to Emil Björnson, Visiting Professor at KTH Royal Institute of Technology and Associate Professor at Linköping University to see if he has explained this in any of his videos. Here is what he said: " I'm not talking about 3GPP terminology in any of my videos. But you can listen to the slides that starts around 12:40 in this video (embedded below) . If you are looking for CSI-RS vs SRS based MU-MIMO, then jump to around 12:40 in this video where you can see CSI-RS being referred to as "grid of beams" and SRS is similar to the other option, which is t

IEEE 802.11be Extremely High Throughput (EHT), a.k.a. Wi-Fi 7

We have been writing about Wi-Fi for a long time, weather it's to do with indoor connectivity , competition with 5G or just a name change to something simpler. When we last wrote about WiFi 6, a.k.a. 802.11ax, we were expecting a quick adoption of the technology in the industry. We are still not there yet.  You know what's strange? None of the new @madebygoogle gadgets from yesterday support Wi-Fi 6. Not the Pixel 5, not the Pixel 4a 5G, not the Nest Audio, and not the new Chromecast. pic.twitter.com/QtJ8iB9FeO — Ry Crist (@rycrist) October 1, 2020 Take for instance the new iPhone 12 supports Wi-Fi 6 in all their models as one would expect but none of the new Google Pixel phones (4a, 4a 5G and 5) support it. In fact none of the new Google devices support it. Which is rather bizarre. While we are still looking forward to Wi-Fi 6 becoming widespread, IEEE has already started working on the successor of 802.11ax, 802.11be - Standard for Information technology--Telecommunicati