Skip to main content

Softbank's Cylindrical Antenna for HAPS to Reduce Handovers

One of the challenges with HAPS or even tethered balloon is that when the balloon or HAPS turns, the cells change position and this can result in handovers even for users that are stationary. This unnecessary signalling can be reduced, as Softbank explained, with an innovative antenna designed to reduce these.

Softbank shared this news last year while its subsidiary HAPS Mobile shared a video here. Quoting from the article:

People are able to use their mobile phones when they’re on the move, such as when they’re riding in cars and trains, for example.

They can do this thanks to what’s called the “handovers.” In the handover process, when a mobile phone moves further away from a base station and the signal becomes weak, it automatically connects to another base station from which it can receive a stronger signal.

With HAPS, the airborne base station moves continuously while the receiver stays stationary, and this causes handovers. A HAPS aircraft delivers network connectivity with radio beams as it circles the sky. But this means that the communication area on the ground (i.e., the footprint) also changes in tandem with the airborne vehicle’s movements and the direction of the radio beams. A mobile phone or device switches cells (i.e., handovers occur), and reception strength can greatly fluctuate. This negatively impacts telecommunications quality.

To solve this problem, “footprint fixation technology” is necessary. Footprint fixation technology secures the direction of radio waves beamed to the ground and prevents communication area switching, even as a HAPS vehicle rotates.

To achieve footprint fixation technology, SoftBank and its subsidiary HAPSMobile led the world in developing what’s called a “cylindrical antenna.” The antenna has a distinctive form with multiple antenna elements wrapped around it in the shape of a cylinder.

By controlling each antenna element individually, it’s possible to direct the radio beam (cell) in any desired direction. By constantly transmitting the radio beam to the same specific area on the ground as a HAPS aircraft rotates, the communication area (footprint) can be secured.

In this way, footprint fixation technology makes it possible to provide from the sky the stable connectivity that is essential for telecommunication services.

You can read further details here or the press release here.

Related Posts

Comments

Popular posts from this blog

Highlights from XGMF's Conference to Advance Millimetre Wave Technology

On April 1, 2024, two of Japan's leading connectivity organizations—the 5G Mobile Promotion Forum (5GMF) and the Beyond 5G Promotion Consortium (B5GPC)—joined forces to create the XG Mobile Promotion Forum ( XGMF ). This merger symbolizes a pivotal step in accelerating the adoption of next-generation wireless technologies. In May 2024, XGMF's Millimeter Wave Promotion Ad Hoc (Millimeter Wave AH) hosted the International Workshop on Millimeter Wave Dissemination for 5G. This event aimed to foster the adoption of millimeter wave (mmWave) technology in Japan and beyond, drawing an audience of approximately 200 attendees and broadcasting in both English and Japanese. The workshop featured opening remarks by Mr. Naohiko Ogiwara, Director of the Radio Department, Telecommunications Infrastructure Bureau, Ministry of Internal Affairs and Communications (MIC). Key speakers included: Mr. Takanori Mashiko (MIC, slides ) Mr. Sam Gielges (Qualcomm, online - no slides) Mr. Christopher Pric...

Testing, Refining, and Improving Stratospheric Connectivity: NTT Docomo’s HAPS Trials

At MWC 2025, NTT Docomo highlighted its latest initiatives under the NTT Group's "NTT C89" space-business strategy, such as mobile-connectivity services using unmanned vehicles, or high-altitude platform stations (HAPS), that fly in the stratosphere for days or months, using relays to provide mobile connectivity in mountainous and remote areas, including at sea and in the sky. A presentation on NTT C89 Aerospace Business Strategy is available here while a presentation on NTT DOCOMO's Non-Terrestrial Network (NTN) for Extreme Coverage Extension is available here . Stratospheric connectivity, enabled by High Altitude Platform Stations (HAPS), is emerging as a key solution for extending mobile coverage to remote and underserved areas. However, ensuring that these airborne platforms can provide stable, high-quality connectivity requires extensive testing and refinement. At MWC 2025, NTT Docomo showcased its progress in this domain, highlighting multiple real-world trials...

How Do Apple AirTags Work?

Apple AirTags have steadily gained popularity in the smart tag market. A recent report highlighted that 69% of smart tag buyers in late 2024 chose an Apple AirTag. This marks a significant rise from 45% in early 2022. In contrast, Tile, the category pioneer now owned by Life360, has seen its market share fall to 11% from 17% during the same period. Samsung's Galaxy SmartTags now hold second place. Interestingly, the technology behind AirTags resembles concepts like Opportunity Driven Multiple Access (ODMA) or Multihop Cellular Networks (MCNs), which I have previously explored . A similar approach has also been discussed regarding Bluetooth-based Ad-Hoc networks . How Do They Work? AirTags primarily use Bluetooth Low Energy (BLE) to communicate with nearby Apple devices that are part of the Find My network. This vast network consists of millions of Apple devices, including iPhones, iPads, and Macs, which can detect AirTags and securely relay their location back to the owner. Addit...