Skip to main content

Lynk Sends Message From Space using LEO Satellite

We have seen on this blog many different companies working to beam ordinary 4G/5G from satellites to space. One new company that came to my attention is Lynk Global (Lynk) that plans to do something similar using nano satellites from the space. To their credit, they have just transmitted an SMS from a LEO satellite to a normal, unmodified mobile phone.

Their website says:

Lynk’s business is to provide everywhere connectivity directly to the existing 5.2 billion mobile phone users on the planet, and to billions more who will now have a compelling reason to buy a mobile phone.

Today’s mobile phone users pay more than $1 trillion a year in total for service. Yet on average, at any given moment, about 750 million phone owners have no connectivity because they live, work or travel outside the range of a ground-based cell tower. Another 2.5 billion people don’t have phones, many because they lack affordable connectivity. The economics of ground-based cell towers make it cost prohibitive to expand into remote areas lacking coverage, such as in rural North America, South-East Asia, Latin America, or sub-Saharan Africa.

By adding Lynk as a service for their existing customers to gain connectivity outside of land-based cell towers, the world’s mobile network operators (MNOs) could generate an additional $150 billion a year in new revenue.

And global coverage could create an additional $250 billion a year in revenue from new customers in remote areas who don’t currently have mobile phones. That $400 billion a year is a 40% revenue increase for the world’s 800 MNOs, all enabled by Lynk’s patented technology.

Lynk’s service will require no additional capital expenditure by MNOs and will work with existing network infrastructure. By operating as a global shared roaming provider, the Lynk service will allow a phone to shift seamlessly from a terrestrial tower to a satellite and back to a terrestrial tower when one is again available. Lynk will serve as a critical partner to MNOs and extend their services everywhere.

Best of all … the technology is proven. 

On February 24, 2020, Lynk succeeded in taking a historic first step that proves the technology required for “everyone, everywhere” connectivity works. In this communications “first”, Lynk successfully sent a text message from a satellite in space to an unmodified mobile phone on Earth.

Via Satellite mentioned:

In a video shared online of the test, when the message comes through on the cell phone, two men are heard celebrating, yelling, “Yes man, yes!” 

“Well, we got what we needed,” one man said. “F— yeah dude. Oh my God!” the other replied. 

 Lynk Co-founder and CEO Charles Miller, a former NASA senior advisor for commercial space, said Lynk is working to deploy its first commercial product. “With the permission of regulators, we are confident that we can bring a world-first solution to the market to tens-of-millions of people by the end of 2020,” he said. 

Lynk is backed by Revolution investment firm’s Rise of the Rest Seed Fund and Blazar Ventures.

A report in Wired said:

Building an extraterrestrial mobile network is tricky because cell phones aren’t designed to communicate with satellites whizzing by at 17,000 mph, 300 miles above the ground. Instead, their software and hardware is optimized to connect with stationary cell towers that are never more than a couple dozen miles away. If you want to connect with cell phones from space, you need an antenna that is sensitive enough to collect their weak signals and powerful enough to return a signal that can be picked up by a cell receiver.

“The hard part is the uplink from the phone,” says Charles Miller, cofounder and CEO of Lynk, a satellite communications company based in Virginia. “You can’t change the phone to add more power. It needs to work out of pocket.”

Within the next two years, Lynk plans to create a constellation of shoebox-sized satellites that will function as orbiting cell towers. Each satellite will use a modified version of terrestrial cell tower software that corrects for things like the Doppler frequency shift caused by the satellite rapidly passing overhead and the delay from sending a signal to space and back. The satellites operate on a relatively low frequency compared to other communications satellites, which means they can tap into the part of the spectrum used by cell phones on earth. Miller says the company has developed an antenna that is both sensitive and powerful enough to communicate with cell phones on earth, but declined to get into specifics of the technology.

In early 2019, Lynk sent its satellite technology to orbit on a Cygnus cargo capsule that docked at the International Space Station. Although it wasn’t a standalone satellite, the payload consisted of Lynk’s core technology and the company demonstrated it could communicate with mobile devices on earth over a 2G network. Since then, the company has launched two other satellite testbeds to the space station and plans to launch a fourth later this month. If all goes well, the next step would be to start launching actual satellites into orbit.

Miller says the company could have a functional satellite cell network as soon as 2022, but it won’t provide global, around-the-clock coverage at first. When the network only has a few dozen satellites, they might pass over users every 90 minutes or so and only provide a few hours of connectivity per day. As more satellites are added to the system, the coverage will improve until the experience of connecting to an orbital cell tower is no different than connecting to a terrestrial one.

But Miller says even a limited connection is better than nothing. “If you’re in a remote area and you only get coverage when you go into town on the weekends, but now you can send and receive messages when a satellite passes over, that’s a valuable service even if it’s only available every hour,” Miller says.

Here is a video of Charles Miller, cofounder and CEO of Lynk from the GSMA:

Note that in the demo video, the message received is over 2G. 2G is the most common technology and is supported by all mobiles so this may be the best approach to provide connectivity to everyone.

Related Posts:


  1. They transmitted a Cell Broadcast message and not an SMS.

    There is a difference between SMS and Cell Broadcast.

    You can see in the video "Emergency Alert" on channel 4380 of the Cell Broadcast -


Post a comment

Popular posts from this blog

High-level Architecture Introduction of Mobile Cellular Networks from 2G to 5G

Here is an old tutorial explaining high level mobile network architecture, starting from GSM and then looking at GPRS, UMTS, LTE & 5G. Slides and video below High-level architecture of Mobile Cellular Networks from 2G to 5G from 3G4G Related links : Free 2G, 3G, 4G & 5G Training Videos 5G (IMT-2020) Wireless 5G vs 4G: what is the difference?

5G Connectivity will Enable New Use Cases

While we have been discussing advanced 5G use cases for years, it is only now, with the Standalone 5G (5G SA) that it is going to become possible to have many of these in practice. Of course they will take time to mature and be popular with the end users. As a part of our Free 5G Training initiative , we made a short video that will provide you with ideas and motivation for why 5G could do a lot more than just faster speeds. The video is embedded below. In addition, Parallel Wireless, one of the companies I consult for, did a webinar on 5G Use Cases which is available here . A good webinar on BrightTALK on 5G Use Cases by @Parallel_tw - #Free5Gtraining #5G #5GNetworks #5GUseCases #5GSpectrum #eMBB #mMTC #URLLC #5GRoadmaps #OpenRAN #5GXR #FWA #Vodafone #TMobile #Healthcare — 5G Training (@5Gtraining) May 28, 2020 Let us know which one is your favorite and which ones do you think will make operators money.

Fixed Wireless Access (FWA) and the Path to 5G Wireless Wireline Convergence (WWC)

I have covered Fixed Wireless Access (FWA) on The 3G4G Blog here and looked at automated HetNet design which included FWA links here . I have also covered Wireline Wireless Convergence (WWC) as part of 5G and Fixed-Mobile Convergence (FMC) posts. The links to the posts are available at the end. Back in December, Juniper took part in a Light Reading webinar which is being shared as part of this post. With revenues flat and traffic continuing to explode, the unsustainable state of network economics needs another disruption. The 5G deployment cycle offers an insertion opportunity for new converged architectures. Wireless offload solutions can re-route the traffic of data-hogging mobile subscribers over wireline cores built for bandwidth and performance rather than mobile cores (EPC) primarily designed for mobility and portability. The 5G Network Architecture in 3GPP Release-16 allows the convergence of fixed and wireless networks. This also allows many new opportunities as can be se