Skip to main content

Loon's Journey is Coming to an End but its Legacy Will Live On!

We have written a lot about Loon on this blog. The project started with a lot of scepticism within the mobile industry but over the years they kept on persisting and solving challenges, one after another. Just when everyone thought that the technology is mature enough and operators starting to give commitment, the parent company has announced the end of Loon!

The internet balloon that came down in Morelos, Mexico

An official blog post by Alastair Westgarth, CEO of Loon, explains:

We talk a lot about connecting the next billion users, but the reality is Loon has been chasing the hardest problem of all in connectivity — the last billion users: The communities in areas too difficult or remote to reach, or the areas where delivering service with existing technologies is just too expensive for everyday people. While we’ve found a number of willing partners along the way, we haven’t found a way to get the costs low enough to build a long-term, sustainable business. Developing radical new technology is inherently risky, but that doesn’t make breaking this news any easier. Today, I’m sad to share that Loon will be winding down.

You can read the detailed post here.

Many operators had committed to connecting the unconnected using Loon. They will all have to look at alternatives. 

Another blog post by Astro Teller, Captain of Moonshots at X said:

Over the coming months, most of the Loon team will be moving on. We’re working to take care of employees and hope to help many find alternative roles at X, Google and Alphabet. A small group of the Loon team will stay to ensure Loon’s operations are wrapped up smoothly and safely — this includes winding down Loon’s pilot service in Kenya. Although Loon is going away, our commitment to connectivity isn’t. Today we’re pledging a fund of $10M to support nonprofits and businesses focussed on connectivity, Internet, entrepreneurship and education in Kenya.

We hope that Loon is a stepping stone to future technologies and businesses that can fill in blank spots on the globe’s map of connectivity. To accelerate that, we’ll be exploring options to take some of Loon’s technology forward. We want to share what we’ve learned and help creative innovators find each other — whether they live amidst the telcos, mobile network operators, city and country governments, NGOs or technology companies.

Some of Loon’s technology — like the high bandwidth (20Gbps+) optical communication links that were first used to beam a connection between balloons bopping in the stratosphere — already lives on in Project Taara. This team is currently working with partners in Sub-Saharan Africa to bring affordable, high-speed internet to unconnected and under-connected communities starting in Kenya.

I have a feeling that we will see the expertise, experience and quite a few technologies from Loon being used by others. Loon was one of the founding members of HAPS Alliance last year. Back in October, we saw Loon partnering with HAPSMobile, backed by Japan's Softbank. Some of the projects will probably continue using the experience and expertise.

While the advantage of HAPS is that they are much closer to the end users as compared to LEO satellites, the challenges associated with managing the weather and the platforms is always a challenge. Having said that, LEO mega constellations are being launched as we speak and are becoming a reality.

While some like Starlink will be using proprietary technologies, the likes of SpaceMobile may be the true gamechangers if they can transmit 2G, 3G, 4G, 5G and even NB-IoT as they claim.  

We look forward to the next generation of HAPS and Satellites for connecting the globe economically. 

Related Posts:

Comments

Popular posts from this blog

High-level Architecture Introduction of Mobile Cellular Networks from 2G to 5G

Here is an old tutorial explaining high level mobile network architecture, starting from GSM and then looking at GPRS, UMTS, LTE & 5G. Slides and video below High-level architecture of Mobile Cellular Networks from 2G to 5G from 3G4G Related links : Free 2G, 3G, 4G & 5G Training Videos 5G (IMT-2020) Wireless 5G vs 4G: what is the difference?

5G Connectivity will Enable New Use Cases

While we have been discussing advanced 5G use cases for years, it is only now, with the Standalone 5G (5G SA) that it is going to become possible to have many of these in practice. Of course they will take time to mature and be popular with the end users. As a part of our Free 5G Training initiative , we made a short video that will provide you with ideas and motivation for why 5G could do a lot more than just faster speeds. The video is embedded below. In addition, Parallel Wireless, one of the companies I consult for, did a webinar on 5G Use Cases which is available here . A good webinar on BrightTALK on 5G Use Cases by @Parallel_tw - https://t.co/AdpLOIOW6u #Free5Gtraining #5G #5GNetworks #5GUseCases #5GSpectrum #eMBB #mMTC #URLLC #5GRoadmaps #OpenRAN #5GXR #FWA #Vodafone #TMobile #Healthcare pic.twitter.com/LV677HrJ2G — 5G Training (@5Gtraining) May 28, 2020 Let us know which one is your favorite and which ones do you think will make operators money.

Fixed Wireless Access (FWA) and the Path to 5G Wireless Wireline Convergence (WWC)

I have covered Fixed Wireless Access (FWA) on The 3G4G Blog here and looked at automated HetNet design which included FWA links here . I have also covered Wireline Wireless Convergence (WWC) as part of 5G and Fixed-Mobile Convergence (FMC) posts. The links to the posts are available at the end. Back in December, Juniper took part in a Light Reading webinar which is being shared as part of this post. With revenues flat and traffic continuing to explode, the unsustainable state of network economics needs another disruption. The 5G deployment cycle offers an insertion opportunity for new converged architectures. Wireless offload solutions can re-route the traffic of data-hogging mobile subscribers over wireline cores built for bandwidth and performance rather than mobile cores (EPC) primarily designed for mobility and portability. The 5G Network Architecture in 3GPP Release-16 allows the convergence of fixed and wireless networks. This also allows many new opportunities as can be se