Skip to main content

GSMA's 'High Altitude Platform Systems: Towers in the Skies' Whitepaper

GSMA together with some mobile network operators recently published a white paper to promote the use of High Altitude Platform Systems (HAPS) technology to meet the need for broadband connectivity worldwide. We have covered HAPS multiple times in our blog posts. They are unmanned aircrafts that fly typically at altitudes of around 20km. 

The description of the paper says:

Operating in the stratosphere, unmanned high-altitude platforms (HAPS) could bring connectivity to areas that are either not covered, or are only partially covered, by terrestrial cellular networks.

This whitepaper highlights the potential of HAPS to meet the need for more broadband connectivity worldwide. HAPS are very versatile: they can be adjusted to prioritise coverage or capacity depending on the use case. Moreover, an aircraft can be deployed to cover a location at short notice. As HAPS can employ LTE and 5G, there are no special requirements on the user equipment: a normal smartphone can be used. As a result, HAPS can support a variety of use cases for both developed and developing markets, including:

  • Greenfield coverage – providing coverage in areas with no cellular networks
  • White spot reduction – filling in gaps in cellular coverage
  • Emergency communications/disaster recovery – backing up damaged terrestrial networks
  • The Internet of Things (IoT) – connecting sensors, appliances, machines and vehicles
  • Temporary coverage for events/tourist hotspots – adding extra capacity in specific locations
  • Fixed wireless access – a broadband alternative to deploying fixed lines
  • Connectivity for urban air mobility and drones – providing better connectivity in the air
  • Private networks – enabling organisations to deploy their own cellular connectivity
  • Terrestrial site backhaul – connecting base stations and edge data centres to the Internet

The white paper has been created thanks to the following contributing mobile operators: Deutsche Telekom, Orange, Telefonica and Vodafone; and supporting mobile operators: NTT Docomo, BT and TIM.

The whitepaper is available here.

Related Posts

Comments

Popular posts from this blog

Highlights from XGMF's Conference to Advance Millimetre Wave Technology

On April 1, 2024, two of Japan's leading connectivity organizations—the 5G Mobile Promotion Forum (5GMF) and the Beyond 5G Promotion Consortium (B5GPC)—joined forces to create the XG Mobile Promotion Forum ( XGMF ). This merger symbolizes a pivotal step in accelerating the adoption of next-generation wireless technologies. In May 2024, XGMF's Millimeter Wave Promotion Ad Hoc (Millimeter Wave AH) hosted the International Workshop on Millimeter Wave Dissemination for 5G. This event aimed to foster the adoption of millimeter wave (mmWave) technology in Japan and beyond, drawing an audience of approximately 200 attendees and broadcasting in both English and Japanese. The workshop featured opening remarks by Mr. Naohiko Ogiwara, Director of the Radio Department, Telecommunications Infrastructure Bureau, Ministry of Internal Affairs and Communications (MIC). Key speakers included: Mr. Takanori Mashiko (MIC, slides ) Mr. Sam Gielges (Qualcomm, online - no slides) Mr. Christopher Pric...

Testing, Refining, and Improving Stratospheric Connectivity: NTT Docomo’s HAPS Trials

At MWC 2025, NTT Docomo highlighted its latest initiatives under the NTT Group's "NTT C89" space-business strategy, such as mobile-connectivity services using unmanned vehicles, or high-altitude platform stations (HAPS), that fly in the stratosphere for days or months, using relays to provide mobile connectivity in mountainous and remote areas, including at sea and in the sky. A presentation on NTT C89 Aerospace Business Strategy is available here while a presentation on NTT DOCOMO's Non-Terrestrial Network (NTN) for Extreme Coverage Extension is available here . Stratospheric connectivity, enabled by High Altitude Platform Stations (HAPS), is emerging as a key solution for extending mobile coverage to remote and underserved areas. However, ensuring that these airborne platforms can provide stable, high-quality connectivity requires extensive testing and refinement. At MWC 2025, NTT Docomo showcased its progress in this domain, highlighting multiple real-world trials...

How Do Apple AirTags Work?

Apple AirTags have steadily gained popularity in the smart tag market. A recent report highlighted that 69% of smart tag buyers in late 2024 chose an Apple AirTag. This marks a significant rise from 45% in early 2022. In contrast, Tile, the category pioneer now owned by Life360, has seen its market share fall to 11% from 17% during the same period. Samsung's Galaxy SmartTags now hold second place. Interestingly, the technology behind AirTags resembles concepts like Opportunity Driven Multiple Access (ODMA) or Multihop Cellular Networks (MCNs), which I have previously explored . A similar approach has also been discussed regarding Bluetooth-based Ad-Hoc networks . How Do They Work? AirTags primarily use Bluetooth Low Energy (BLE) to communicate with nearby Apple devices that are part of the Find My network. This vast network consists of millions of Apple devices, including iPhones, iPads, and Macs, which can detect AirTags and securely relay their location back to the owner. Addit...