Skip to main content

Telenor's IoT Prediction Report 2024

Earlier this year, Telenor IoT, a leading brand in IoT Connectivity, published its annual IoT Predictions Report. It explains how combining Artificial Intelligence (AI) and the Internet of Things (IoT), also known as AIoT or AI4IoT, is necessary for companies to stay competitive in today’s digital world.

Quoting from the report:

AIoT is the convergence of AI technologies into an IoT application where IoT represents data and AI - a set of analytical tools that enable extraction of value from data, also commonly termed ‘Internet of Intelligent Things’, ‘IoT with AI’, and ‘IoT Machine Learning’. These terms can be used interchangeably, and each describes an architecture that integrates both technologies in a single solution, a combination which can create a transformative impact.

As seen in the diagram to the left, the integration of AI into an IoT deployment can occur at either the edge or in the cloud. The ability of cloud computing to offer scale, flexibility, and power beyond the reach of traditional on premises equipment has made it the traditional platform for analytics and AI, helping manage vast volumes of data and transform them into impactful insights. Recently though, Edge AI has gained more traction as a way to address low-latency requirements, reduce cost, and mitigate security and privacy concerns.

In either scenario, the essential aim of using AI is to find patterns in data and run the analysis for extracting meaningful insights for business or automating the tasks, in turn improving decision making processes. Simply put, AIoT enables a conversion of raw data into powerful action with a tangible business value. If done correctly, a faster, more robust and sustainable use of IoT data for value creation can be achieved when deploying most modern data and AI technologies, such as Generative AI.

To put it another way, IoT provides the data while AI furnishes the power to unlock responses. A simple analogy for AIoT is the human body. In this scenario, the IoT is the central nervous system, responsible for collecting data and transmitting this information through its network. AI would be the brain; it takes this collected information, analyzes it to determine its importance, and decides how to respond. Although each system has specific functions, they are all interconnected and dependent on one another, and their convergence makes the other more effective.

You can download the report here. An interview on this is embedded below:

Related Posts

Comments

Popular posts from this blog

Highlights from XGMF's Conference to Advance Millimetre Wave Technology

On April 1, 2024, two of Japan's leading connectivity organizations—the 5G Mobile Promotion Forum (5GMF) and the Beyond 5G Promotion Consortium (B5GPC)—joined forces to create the XG Mobile Promotion Forum ( XGMF ). This merger symbolizes a pivotal step in accelerating the adoption of next-generation wireless technologies. In May 2024, XGMF's Millimeter Wave Promotion Ad Hoc (Millimeter Wave AH) hosted the International Workshop on Millimeter Wave Dissemination for 5G. This event aimed to foster the adoption of millimeter wave (mmWave) technology in Japan and beyond, drawing an audience of approximately 200 attendees and broadcasting in both English and Japanese. The workshop featured opening remarks by Mr. Naohiko Ogiwara, Director of the Radio Department, Telecommunications Infrastructure Bureau, Ministry of Internal Affairs and Communications (MIC). Key speakers included: Mr. Takanori Mashiko (MIC, slides ) Mr. Sam Gielges (Qualcomm, online - no slides) Mr. Christopher Pric...

Testing, Refining, and Improving Stratospheric Connectivity: NTT Docomo’s HAPS Trials

At MWC 2025, NTT Docomo highlighted its latest initiatives under the NTT Group's "NTT C89" space-business strategy, such as mobile-connectivity services using unmanned vehicles, or high-altitude platform stations (HAPS), that fly in the stratosphere for days or months, using relays to provide mobile connectivity in mountainous and remote areas, including at sea and in the sky. A presentation on NTT C89 Aerospace Business Strategy is available here while a presentation on NTT DOCOMO's Non-Terrestrial Network (NTN) for Extreme Coverage Extension is available here . Stratospheric connectivity, enabled by High Altitude Platform Stations (HAPS), is emerging as a key solution for extending mobile coverage to remote and underserved areas. However, ensuring that these airborne platforms can provide stable, high-quality connectivity requires extensive testing and refinement. At MWC 2025, NTT Docomo showcased its progress in this domain, highlighting multiple real-world trials...

How Do Apple AirTags Work?

Apple AirTags have steadily gained popularity in the smart tag market. A recent report highlighted that 69% of smart tag buyers in late 2024 chose an Apple AirTag. This marks a significant rise from 45% in early 2022. In contrast, Tile, the category pioneer now owned by Life360, has seen its market share fall to 11% from 17% during the same period. Samsung's Galaxy SmartTags now hold second place. Interestingly, the technology behind AirTags resembles concepts like Opportunity Driven Multiple Access (ODMA) or Multihop Cellular Networks (MCNs), which I have previously explored . A similar approach has also been discussed regarding Bluetooth-based Ad-Hoc networks . How Do They Work? AirTags primarily use Bluetooth Low Energy (BLE) to communicate with nearby Apple devices that are part of the Find My network. This vast network consists of millions of Apple devices, including iPhones, iPads, and Macs, which can detect AirTags and securely relay their location back to the owner. Addit...