Skip to main content

Direct-to-Mobile Communications Using LEO Satellites gets a Step Closer

In Nov 2022, Rakuten Mobile announced that it has obtained preliminary experimental test station licenses to conduct mobile communication tests and preliminary verification in Japan using AST SpaceMobile’s low earth orbit satellite, BlueWalker 3.

We blogged about AST & Science's ambition to have SpaceMobile beam 4G/5G directly to devices here and here. Back in Nov. AST SpaceMobile announced that it had successfully completed deployment of the communications array for its test satellite, BlueWalker 3 (“BW3”), in orbit. I found the Tweet showing the unfolding very interesting.

Coming back to Rakuten Mobile's announcement, the press release said:

In order to conduct preliminary verification and communication tests between the test satellite launched by AST SpaceMobile, a gateway earth station in Japan and smartphones on earth, Rakuten Mobile made applications to the Tohoku Telecommunications Bureau for a Gateway Experimental Test Station license and to the Kanto Telecommunications Bureau for a Mobile Terminal Experimental Test Station license, and both applications have now been approved.

Upon receiving the licenses, Rakuten Mobile will begin to prepare a gateway earth station in Fukushima Prefecture to test and verify direct communication between BlueWalker 3 and mobile devices in mountainous areas in Hokkaido.

To enable testing with Rakuten Mobile and other carriers, Rakuten Symphony will provide a variety of software from its Symworld™ product portfolio to AST SpaceMobile to be integrated into the company’s satellite system and enable the company’s space-based cellular broadband network. The software to be integrated includes Rakuten Symphony’s vRAN (virtualized Radio Access Network) software, OSS (Operations Support Systems) and BSS (Business Support Systems) software.

Rakuten Mobile will continue its efforts to expand Rakuten's coverage area and improve communication quality so that customers can enjoy comfortable and convenient communication services anywhere.

A recent article in IEEE Spectrum also examines how existing smartphones will connect with new satellite constellations in 2023.

Related Posts:

Comments

Popular posts from this blog

IEEE 802.11bn Ultra High Reliability (UHR), a.k.a. Wi-Fi 8

Back in 2020 we looked at the introductory post of Wi-Fi 7 which was followed up by a more detailed post in Feb 2022. We are now following on with an introductory post on the next generation Wi-Fi.  A new paper on arXiv explores the journey towards IEEE 802.11bn Ultra High Reliability (UHR), the amendment that will form the basis of Wi-Fi 8. Quoting selected items from the paper  below: After providing an overview of the nearly completed Wi-Fi 7 standard, we present new use cases calling for further Wi-Fi evolution. We also outline current standardization, certification, and spectrum allocation activities, sharing updates from the newly formed UHR Study Group. We then introduce the disruptive new features envisioned for Wi-Fi 8 and discuss the associated research challenges. Among those, we focus on access point coordination and demonstrate that it could build upon 802.11be multi-link operation to make Ultra High Reliability a reality in Wi-Fi 8. The IEEE 802.11bn UHR: Whose ...

Highlights from XGMF's Conference to Advance Millimetre Wave Technology

On April 1, 2024, two of Japan's leading connectivity organizations—the 5G Mobile Promotion Forum (5GMF) and the Beyond 5G Promotion Consortium (B5GPC)—joined forces to create the XG Mobile Promotion Forum ( XGMF ). This merger symbolizes a pivotal step in accelerating the adoption of next-generation wireless technologies. In May 2024, XGMF's Millimeter Wave Promotion Ad Hoc (Millimeter Wave AH) hosted the International Workshop on Millimeter Wave Dissemination for 5G. This event aimed to foster the adoption of millimeter wave (mmWave) technology in Japan and beyond, drawing an audience of approximately 200 attendees and broadcasting in both English and Japanese. The workshop featured opening remarks by Mr. Naohiko Ogiwara, Director of the Radio Department, Telecommunications Infrastructure Bureau, Ministry of Internal Affairs and Communications (MIC). Key speakers included: Mr. Takanori Mashiko (MIC, slides ) Mr. Sam Gielges (Qualcomm, online - no slides) Mr. Christopher Pric...

Testing, Refining, and Improving Stratospheric Connectivity: NTT Docomo’s HAPS Trials

At MWC 2025, NTT Docomo highlighted its latest initiatives under the NTT Group's "NTT C89" space-business strategy, such as mobile-connectivity services using unmanned vehicles, or high-altitude platform stations (HAPS), that fly in the stratosphere for days or months, using relays to provide mobile connectivity in mountainous and remote areas, including at sea and in the sky. A presentation on NTT C89 Aerospace Business Strategy is available here while a presentation on NTT DOCOMO's Non-Terrestrial Network (NTN) for Extreme Coverage Extension is available here . Stratospheric connectivity, enabled by High Altitude Platform Stations (HAPS), is emerging as a key solution for extending mobile coverage to remote and underserved areas. However, ensuring that these airborne platforms can provide stable, high-quality connectivity requires extensive testing and refinement. At MWC 2025, NTT Docomo showcased its progress in this domain, highlighting multiple real-world trials...