Skip to main content

Amazon's Project Kuiper Megaconstellation Aims to Deliver Fast, Affordable Broadband

Amazon's Project Kuiper is an initiative to increase global broadband access through a constellation of 3,236 satellites in low earth orbit (LEO). Their mission is to deliver fast, affordable broadband to unserved and underserved communities around the world.

A post on Amazon explains:

Project Kuiper started off as an internal code name for the program—and it stuck. The name refers to the Kuiper Belt, a region of the solar system that exists beyond the eight major planets. The Kuiper Belt itself is named after the late Dutch astronomer Gerard Kuiper, who is considered by many to be the father of modern planetary science.

Project Kuiper is a long-term initiative. Our FCC license requires that we deploy and operate at least half of our satellite constellation by July 2026. We’re preparing to launch our first two prototype satellites in early 2023, and we expect to provide service to the earliest Project Kuiper customers by the end of 2024.

This marketing video is a good explainer of Project Kuiper:

Recently Amazon shared a post about Project Kuiper’s low-cost customer terminals.

To use the service, customers will install an outdoor antenna—called a customer terminal—to communicate with satellites passing overhead. Traditionally, this equipment has been too large, too complex, and too expensive for many customers, making it difficult for LEO constellations to bridge the digital divide in a meaningful way. 

Project Kuiper plans to serve tens of millions of customers, so we set an ambitious goal at the start of the project: design a customer terminal that costs less than $500 to build. Project Kuiper engineers hit that milestone in 2020, inventing a new antenna architecture that was smaller and lighter than traditional designs. Since then, the team has continued to innovate to make its terminal designs even smaller, more affordable, and more capable.

Amazon recently unveiled the results of that work.

Our ultra-compact model provides speeds of up to 100 megabits per second (Mbps), our standard model delivers up to 400 Mbps, and our largest model, which is intended for enterprise, government, and telecommunications applications, delivers up to 1 gigabit per second (Gbps).

You can read more about terminals here. Let's hope the prototypes are launched successfully and deliver on the promises. This will increase the likelihood of the success of this project. We are certainly looking forward to it.

Related Posts

Comments

Popular posts from this blog

Highlights from XGMF's Conference to Advance Millimetre Wave Technology

On April 1, 2024, two of Japan's leading connectivity organizations—the 5G Mobile Promotion Forum (5GMF) and the Beyond 5G Promotion Consortium (B5GPC)—joined forces to create the XG Mobile Promotion Forum ( XGMF ). This merger symbolizes a pivotal step in accelerating the adoption of next-generation wireless technologies. In May 2024, XGMF's Millimeter Wave Promotion Ad Hoc (Millimeter Wave AH) hosted the International Workshop on Millimeter Wave Dissemination for 5G. This event aimed to foster the adoption of millimeter wave (mmWave) technology in Japan and beyond, drawing an audience of approximately 200 attendees and broadcasting in both English and Japanese. The workshop featured opening remarks by Mr. Naohiko Ogiwara, Director of the Radio Department, Telecommunications Infrastructure Bureau, Ministry of Internal Affairs and Communications (MIC). Key speakers included: Mr. Takanori Mashiko (MIC, slides ) Mr. Sam Gielges (Qualcomm, online - no slides) Mr. Christopher Pric...

Testing, Refining, and Improving Stratospheric Connectivity: NTT Docomo’s HAPS Trials

At MWC 2025, NTT Docomo highlighted its latest initiatives under the NTT Group's "NTT C89" space-business strategy, such as mobile-connectivity services using unmanned vehicles, or high-altitude platform stations (HAPS), that fly in the stratosphere for days or months, using relays to provide mobile connectivity in mountainous and remote areas, including at sea and in the sky. A presentation on NTT C89 Aerospace Business Strategy is available here while a presentation on NTT DOCOMO's Non-Terrestrial Network (NTN) for Extreme Coverage Extension is available here . Stratospheric connectivity, enabled by High Altitude Platform Stations (HAPS), is emerging as a key solution for extending mobile coverage to remote and underserved areas. However, ensuring that these airborne platforms can provide stable, high-quality connectivity requires extensive testing and refinement. At MWC 2025, NTT Docomo showcased its progress in this domain, highlighting multiple real-world trials...

How Do Apple AirTags Work?

Apple AirTags have steadily gained popularity in the smart tag market. A recent report highlighted that 69% of smart tag buyers in late 2024 chose an Apple AirTag. This marks a significant rise from 45% in early 2022. In contrast, Tile, the category pioneer now owned by Life360, has seen its market share fall to 11% from 17% during the same period. Samsung's Galaxy SmartTags now hold second place. Interestingly, the technology behind AirTags resembles concepts like Opportunity Driven Multiple Access (ODMA) or Multihop Cellular Networks (MCNs), which I have previously explored . A similar approach has also been discussed regarding Bluetooth-based Ad-Hoc networks . How Do They Work? AirTags primarily use Bluetooth Low Energy (BLE) to communicate with nearby Apple devices that are part of the Find My network. This vast network consists of millions of Apple devices, including iPhones, iPads, and Macs, which can detect AirTags and securely relay their location back to the owner. Addit...