Skip to main content

Lower Latency and Higher Data Rates with Hollow Core Fiber (HCF)

Back in May, I attended the inaugural UK Telecoms Innovation (UKTIN) Ecosystem Conference. One of the talks from Microsoft caught my attention as the speaker was discussing the advantages of Hollow-Core Fibre. While the video or slides from that presentation aren't available, here is another talk from Infinera, who are experts in optical technology.

In this talk, Geoff Bennett performs a reality check on HCF which is already being deployed in financial trading applications in the UK. Quoting from the talk description:

Conventional optical fiber, as “an asset that keeps on giving”, has served our industry incredibly well over the past 30 years but we know that there are fundamental limits on fiber capacity. In addition the popularity of low latency applications like financial services and gaming are demanding lower latency, which can become a problem for silica-based fiber because light travels at about two thirds of the speed through glass as it does through air.

Hollow Core Fiber (HCF) has been under development for over a decade, with the promise of far lower latency because the optical signal travels through air, rather than glass. A longer term goal would be to position HCF as a way to offer higher transmission capacity than conventional, silica core fiber.

HCF potentially increases capacity in two distinct ways. First, light is travelling in air, which is a linear medium as opposed to glass which is nonlinear. This could mean that transmit power and amplifier power could be increased, leading to higher capacity. Second is that propagation in air could mean a sufficiently low attenuation across a much wider range of wavelengths than silica core fiber.

This presentation explains how HCF works; gives a brief description of its evolution and the current commercial and manufacturing status; offers a first level approximation of how and when the benefits of HCF will be available; and looks at the impact on the “fiber ecosystem” of transponders, ROADMs, amplifiers, connectors, installation techniques, splice repairs and test gear.

The video of the talk is as follows:

The slides are available here.

Related Posts:

Comments

Popular posts from this blog

Highlights from XGMF's Conference to Advance Millimetre Wave Technology

On April 1, 2024, two of Japan's leading connectivity organizations—the 5G Mobile Promotion Forum (5GMF) and the Beyond 5G Promotion Consortium (B5GPC)—joined forces to create the XG Mobile Promotion Forum ( XGMF ). This merger symbolizes a pivotal step in accelerating the adoption of next-generation wireless technologies. In May 2024, XGMF's Millimeter Wave Promotion Ad Hoc (Millimeter Wave AH) hosted the International Workshop on Millimeter Wave Dissemination for 5G. This event aimed to foster the adoption of millimeter wave (mmWave) technology in Japan and beyond, drawing an audience of approximately 200 attendees and broadcasting in both English and Japanese. The workshop featured opening remarks by Mr. Naohiko Ogiwara, Director of the Radio Department, Telecommunications Infrastructure Bureau, Ministry of Internal Affairs and Communications (MIC). Key speakers included: Mr. Takanori Mashiko (MIC, slides ) Mr. Sam Gielges (Qualcomm, online - no slides) Mr. Christopher Pric...

Testing, Refining, and Improving Stratospheric Connectivity: NTT Docomo’s HAPS Trials

At MWC 2025, NTT Docomo highlighted its latest initiatives under the NTT Group's "NTT C89" space-business strategy, such as mobile-connectivity services using unmanned vehicles, or high-altitude platform stations (HAPS), that fly in the stratosphere for days or months, using relays to provide mobile connectivity in mountainous and remote areas, including at sea and in the sky. A presentation on NTT C89 Aerospace Business Strategy is available here while a presentation on NTT DOCOMO's Non-Terrestrial Network (NTN) for Extreme Coverage Extension is available here . Stratospheric connectivity, enabled by High Altitude Platform Stations (HAPS), is emerging as a key solution for extending mobile coverage to remote and underserved areas. However, ensuring that these airborne platforms can provide stable, high-quality connectivity requires extensive testing and refinement. At MWC 2025, NTT Docomo showcased its progress in this domain, highlighting multiple real-world trials...

How Do Apple AirTags Work?

Apple AirTags have steadily gained popularity in the smart tag market. A recent report highlighted that 69% of smart tag buyers in late 2024 chose an Apple AirTag. This marks a significant rise from 45% in early 2022. In contrast, Tile, the category pioneer now owned by Life360, has seen its market share fall to 11% from 17% during the same period. Samsung's Galaxy SmartTags now hold second place. Interestingly, the technology behind AirTags resembles concepts like Opportunity Driven Multiple Access (ODMA) or Multihop Cellular Networks (MCNs), which I have previously explored . A similar approach has also been discussed regarding Bluetooth-based Ad-Hoc networks . How Do They Work? AirTags primarily use Bluetooth Low Energy (BLE) to communicate with nearby Apple devices that are part of the Find My network. This vast network consists of millions of Apple devices, including iPhones, iPads, and Macs, which can detect AirTags and securely relay their location back to the owner. Addit...